Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import pipeline
|
2 |
+
import pandas as pd
|
3 |
+
from openai import OpenAI
|
4 |
+
import gradio as gr
|
5 |
+
import matplotlib.pyplot as plt
|
6 |
+
from dotenv import dotenv_values
|
7 |
+
|
8 |
+
#This is a model for a multi-label classification task that classifies text into different emotions. It works only in English.
|
9 |
+
classifier = pipeline("text-classification", model="SamLowe/roberta-base-go_emotions")
|
10 |
+
|
11 |
+
# This is a model for a translation task, designed to translate text.
|
12 |
+
# We use it to translate any non-English text into English, so the classifier can then classify the emotions.
|
13 |
+
|
14 |
+
translator = pipeline(task="translation", model="facebook/nllb-200-distilled-600M")
|
15 |
+
languages = {
|
16 |
+
"English": "eng_Latn",
|
17 |
+
"French": "fra_Latn",
|
18 |
+
"Arabic": "arb_Arab",
|
19 |
+
"Spanish": "spa_Latn",
|
20 |
+
"German": "deu_Latn",
|
21 |
+
"Chinese (Simplified)": "zho_Hans",
|
22 |
+
"Hindi": "hin_Deva"
|
23 |
+
}
|
24 |
+
|
25 |
+
# prepare openAI client with our api key
|
26 |
+
env_values = dotenv_values("./app.env")
|
27 |
+
client = OpenAI(
|
28 |
+
api_key= env_values['OPENAI_API_KEY'],)
|
29 |
+
|
30 |
+
|
31 |
+
# Create a DataFrame to store user entries and perform analysis.
|
32 |
+
|
33 |
+
structure = {
|
34 |
+
'Date': [],
|
35 |
+
'Text': [],
|
36 |
+
'Mood': []
|
37 |
+
}
|
38 |
+
df = pd.DataFrame(structure)
|
39 |
+
|
40 |
+
|
41 |
+
# Take the text and its source language, translate it to English, so that the classifier can perform the task.
|
42 |
+
def translator_text(text, src_lang):
|
43 |
+
translation = translator(text, src_lang=src_lang, tgt_lang="eng_Latn")
|
44 |
+
return translation[0]['translation_text']
|
45 |
+
|
46 |
+
|
47 |
+
# Take all the inputs from the user, including the mood (result from the classifier), and append them to the DataFrame.
|
48 |
+
def appender(date, text, mood):
|
49 |
+
global df
|
50 |
+
new_row = pd.DataFrame({'Date': [date], 'Text': [text], 'Mood': [mood]})
|
51 |
+
df = pd.concat([df, new_row], ignore_index=True)
|
52 |
+
|
53 |
+
|
54 |
+
def main(date, src_lang, text):
|
55 |
+
|
56 |
+
# First: Translate the text to English if it is not already in English.
|
57 |
+
if src_lang!= 'English':
|
58 |
+
text = translator_text(text, languages[src_lang])
|
59 |
+
|
60 |
+
# Second : Classify the text
|
61 |
+
mood = classifier(text)[0]['label']
|
62 |
+
|
63 |
+
# Third : Show a message to the user depending on how they feel.
|
64 |
+
chat_completion = client.chat.completions.create(
|
65 |
+
messages=[
|
66 |
+
{
|
67 |
+
"role": "user",
|
68 |
+
"content": f"I feel{mood}, can you tell me a message, without any introductory phrase, just the message itself.",
|
69 |
+
}
|
70 |
+
],
|
71 |
+
model="gpt-3.5-turbo",
|
72 |
+
)
|
73 |
+
|
74 |
+
# Finally : Save to DataFrame
|
75 |
+
appender(date, text, mood)
|
76 |
+
|
77 |
+
#Highlighted the output utilizing 'HighlightedText' in gradio
|
78 |
+
highlighted_mood = [(f"Today you're feeling", mood)]
|
79 |
+
return highlighted_mood, chat_completion.choices[0].message.content
|
80 |
+
|
81 |
+
#Interface
|
82 |
+
demo = gr.Interface(
|
83 |
+
fn=main,
|
84 |
+
inputs=[gr.Textbox(label="Enter Date (YYYY-MM-DD)"), gr.Dropdown(choices=list(languages.keys()),label="Select a Language",value="English"), gr.Textbox(label="What's happened today?")],
|
85 |
+
outputs=[gr.HighlightedText(label="Mood"), gr.Textbox(label="Message")],
|
86 |
+
title = "Daily Journal",
|
87 |
+
description=(
|
88 |
+
"Capture your daily experiences, reflections, and insights in a personal journal.\n"
|
89 |
+
"Log and monitor your mood daily to identify patterns and trends over time.\n"
|
90 |
+
"Get inspirational or motivational messages each day."
|
91 |
+
),
|
92 |
+
theme=gr.themes.Soft() # theme form gradio documentation
|
93 |
+
)
|
94 |
+
|
95 |
+
demo.launch(debug=True)
|