Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,8 +1,54 @@
|
|
1 |
-
# Use a pipeline as a high-level helper
|
2 |
-
from transformers import pipeline
|
3 |
|
4 |
-
|
5 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
]
|
7 |
-
|
8 |
-
|
|
|
|
|
|
|
1 |
|
2 |
+
nl2sqlite_template_cn = """You are a SQLite expert. Now you need to read and understand the following [database schema] description,
|
3 |
+
as well as the [reference information] that may be used, and use SQLite knowledge to generate SQL statements to answer [user questions].
|
4 |
+
[User question]
|
5 |
+
{question}
|
6 |
+
|
7 |
+
[Database schema]
|
8 |
+
{db_schema}
|
9 |
+
|
10 |
+
[Reference information]
|
11 |
+
{evidence}
|
12 |
+
|
13 |
+
[User question]
|
14 |
+
{question}
|
15 |
+
|
16 |
+
```sql"""
|
17 |
+
|
18 |
+
import torch
|
19 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
20 |
+
|
21 |
+
model_name = "XGenerationLab/XiYanSQL-QwenCoder-3B-2502"
|
22 |
+
model = AutoModelForCausalLM.from_pretrained(
|
23 |
+
model_name,
|
24 |
+
torch_dtype=torch.bfloat16,
|
25 |
+
device_map="auto"
|
26 |
+
)
|
27 |
+
|
28 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
29 |
+
|
30 |
+
## dialects -> ['SQLite', 'PostgreSQL', 'MySQL']
|
31 |
+
prompt = nl2sqlite_template_cn.format(dialect="", db_schema="", question="", evidence="")
|
32 |
+
message = [{'role': 'user', 'content': prompt}]
|
33 |
+
|
34 |
+
text = tokenizer.apply_chat_template(
|
35 |
+
message,
|
36 |
+
tokenize=False,
|
37 |
+
add_generation_prompt=True
|
38 |
+
)
|
39 |
+
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
|
40 |
+
|
41 |
+
generated_ids = model.generate(
|
42 |
+
**model_inputs,
|
43 |
+
pad_token_id=tokenizer.pad_token_id,
|
44 |
+
eos_token_id=tokenizer.eos_token_id,
|
45 |
+
max_new_tokens=1024,
|
46 |
+
temperature=0.1,
|
47 |
+
top_p=0.8,
|
48 |
+
do_sample=True,
|
49 |
+
)
|
50 |
+
generated_ids = [
|
51 |
+
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
|
52 |
]
|
53 |
+
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
54 |
+
|