nl2sqlite_template_cn = """You are a SQLite expert. Now you need to read and understand the following [database schema] description, as well as the [reference information] that may be used, and use SQLite knowledge to generate SQL statements to answer [user questions]. [User question] {question} [Database schema] {db_schema} [Reference information] {evidence} [User question] {question} ```sql""" import torch from transformers import AutoModelForCausalLM, AutoTokenizer model_name = "XGenerationLab/XiYanSQL-QwenCoder-3B-2502" model = AutoModelForCausalLM.from_pretrained( model_name, torch_dtype=torch.bfloat16, device_map="auto" ) tokenizer = AutoTokenizer.from_pretrained(model_name) ## dialects -> ['SQLite', 'PostgreSQL', 'MySQL'] prompt = nl2sqlite_template_cn.format(dialect="", db_schema="", question="", evidence="") message = [{'role': 'user', 'content': prompt}] text = tokenizer.apply_chat_template( message, tokenize=False, add_generation_prompt=True ) model_inputs = tokenizer([text], return_tensors="pt").to(model.device) generated_ids = model.generate( **model_inputs, pad_token_id=tokenizer.pad_token_id, eos_token_id=tokenizer.eos_token_id, max_new_tokens=1024, temperature=0.1, top_p=0.8, do_sample=True, ) generated_ids = [ output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids) ] response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]