Shahrukh2016 commited on
Commit
5518374
·
0 Parent(s):

Duplicate from Shahrukh2016/Netflix_Recommender_System

Browse files
.gitattributes ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ *.7z filter=lfs diff=lfs merge=lfs -text
2
+ *.arrow filter=lfs diff=lfs merge=lfs -text
3
+ *.bin filter=lfs diff=lfs merge=lfs -text
4
+ *.bz2 filter=lfs diff=lfs merge=lfs -text
5
+ *.ckpt filter=lfs diff=lfs merge=lfs -text
6
+ *.ftz filter=lfs diff=lfs merge=lfs -text
7
+ *.gz filter=lfs diff=lfs merge=lfs -text
8
+ *.h5 filter=lfs diff=lfs merge=lfs -text
9
+ *.joblib filter=lfs diff=lfs merge=lfs -text
10
+ *.lfs.* filter=lfs diff=lfs merge=lfs -text
11
+ *.mlmodel filter=lfs diff=lfs merge=lfs -text
12
+ *.model filter=lfs diff=lfs merge=lfs -text
13
+ *.msgpack filter=lfs diff=lfs merge=lfs -text
14
+ *.npy filter=lfs diff=lfs merge=lfs -text
15
+ *.npz filter=lfs diff=lfs merge=lfs -text
16
+ *.onnx filter=lfs diff=lfs merge=lfs -text
17
+ *.ot filter=lfs diff=lfs merge=lfs -text
18
+ *.parquet filter=lfs diff=lfs merge=lfs -text
19
+ *.pb filter=lfs diff=lfs merge=lfs -text
20
+ *.pickle filter=lfs diff=lfs merge=lfs -text
21
+ *.pkl filter=lfs diff=lfs merge=lfs -text
22
+ *.pt filter=lfs diff=lfs merge=lfs -text
23
+ *.pth filter=lfs diff=lfs merge=lfs -text
24
+ *.rar filter=lfs diff=lfs merge=lfs -text
25
+ *.safetensors filter=lfs diff=lfs merge=lfs -text
26
+ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
27
+ *.tar.* filter=lfs diff=lfs merge=lfs -text
28
+ *.tflite filter=lfs diff=lfs merge=lfs -text
29
+ *.tgz filter=lfs diff=lfs merge=lfs -text
30
+ *.wasm filter=lfs diff=lfs merge=lfs -text
31
+ *.xz filter=lfs diff=lfs merge=lfs -text
32
+ *.zip filter=lfs diff=lfs merge=lfs -text
33
+ *.zst filter=lfs diff=lfs merge=lfs -text
34
+ *tfevents* filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ title: Netflix Recommender System
3
+ emoji: 💻
4
+ colorFrom: pink
5
+ colorTo: yellow
6
+ sdk: streamlit
7
+ sdk_version: 1.17.0
8
+ app_file: app.py
9
+ pinned: false
10
+ license: other
11
+ duplicated_from: Shahrukh2016/Netflix_Recommender_System
12
+ ---
13
+
14
+ Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
app.py ADDED
@@ -0,0 +1,73 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ######################################################
2
+ # Importing necessary libraries
3
+ import streamlit as st
4
+ import pickle
5
+ import pandas as pd
6
+
7
+ #######################################################
8
+ # Loading the pickle file
9
+ content_dict= pickle.load(open('content_dict.pkl','rb'))
10
+
11
+ # Converting dictionary into pandas DataFrame
12
+ content= pd.DataFrame(content_dict)
13
+
14
+ # Loding the pickle file
15
+ similarity= pickle.load(open('cosine_similarity.pkl','rb'))
16
+
17
+ #######################################################
18
+ # Defining a function for recommendation system
19
+ def recommend(title, cosine_sim=similarity, data=content):
20
+ recommended_content=[]
21
+ # Get the index of the input title in the programme_list
22
+ programme_list = data['title'].to_list()
23
+ index = programme_list.index(title)
24
+
25
+ # Create a list of tuples containing the similarity score and index
26
+ # between the input title and all other programmes in the dataset
27
+ sim_scores = list(enumerate(cosine_sim[index]))
28
+
29
+ # Sort the list of tuples by similarity score in descending order
30
+ sim_scores = sorted(sim_scores, key=lambda x: x[1], reverse=True)[1:11]
31
+
32
+ # Get the recommended movie titles and their similarity scores
33
+ recommend_index = [i[0] for i in sim_scores]
34
+ rec_movie = data['title'].iloc[recommend_index]
35
+ rec_score = [round(i[1], 4) for i in sim_scores]
36
+
37
+ # Create a pandas DataFrame to display the recommendations
38
+ rec_table = pd.DataFrame(list(zip(rec_movie, rec_score)), columns=['Recommendation', 'Similarity_score(0-1)'])
39
+ # recommended_content.append(rec_table['Recommendation'].values)
40
+
41
+ return rec_table['Recommendation'].values
42
+
43
+ #######################################################
44
+ # # Loading the pickle file
45
+ # content_dict= pickle.load(open('content_dict.pkl','rb'))
46
+
47
+ # # Converting dictionary into pandas DataFrame
48
+ # content= pd.DataFrame(content_dict)
49
+
50
+ # # Loding the pickle file
51
+ # similarity= pickle.load(open('cosine_similarity.pkl','rb'))
52
+
53
+ ########################################################
54
+ # Displaying title
55
+ st.title("Netflix Recommender System")
56
+
57
+ # Display dialogue box that contains content
58
+ selected_content_name = st.selectbox(
59
+ 'Which Movie/TV Show are you watching?',
60
+ content['title'].values)
61
+ st.write('**Note**: We have the data till 2019 only.')
62
+ #########################################################
63
+
64
+ # Setting a button
65
+ if st.button('Recommend'):
66
+ recommendations= recommend(title=selected_content_name)
67
+ st.write('**_You are watching:_**', selected_content_name)
68
+ st.write('**_Your top 10 recommendations:_**')
69
+ for num,i in enumerate(recommendations):
70
+ st.write(num+1,':', i)
71
+
72
+ # Last note
73
+ st.write('_Lights out, popcorn in hand, and let the movies begin! We hope our recommendations hit the spot._:smile:')
content.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1e366a1e58d083ba23635855fb173d811a8ec30a1c54cd0a581cd52ee0b55cac
3
+ size 10107932
content_dict.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:02c7c712ba520b713b35581143b0fe070710cf39ec225c71adbbce35b1a0dd66
3
+ size 10312847
cosine_similarity.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4d7016172d6a2f870b8cbcdcabd7e75bc58535dc3e3e6cbe24fcca83a835eadb
3
+ size 482983363
recommend.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1212366ceb56df7555e013fd1a567c4dfadd1a8c65059d9ca62438d7cec9f298
3
+ size 45
requirements.txt ADDED
Binary file (1.69 kB). View file
 
teamcolab_netflixmoviesandtvshowsclustering_shahrukh.py ADDED
The diff for this file is too large to render. See raw diff
 
tfidf.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0397536ca0d45239f9622c039f91e443670e524085c405dfcc535b8764d292b3
3
+ size 1324438
tfidf_matrix.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c99d328016ea1889fc88f3502e7ef9534f673842ad2270efd432057d0ebd26f3
3
+ size 3424782