File size: 6,496 Bytes
adb1b3e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ccba0b6
adb1b3e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5ef27d0
adb1b3e
 
 
 
 
 
 
 
 
 
5ef27d0
 
adb1b3e
 
 
 
 
 
 
 
 
5ef27d0
adb1b3e
 
 
 
 
 
 
 
5ef27d0
adb1b3e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5ef27d0
adb1b3e
5ef27d0
adb1b3e
 
 
 
 
 
 
 
 
 
 
 
 
8ec65bb
adb1b3e
 
 
 
 
 
 
5ef27d0
adb1b3e
5ef27d0
 
 
 
adb1b3e
 
 
 
 
 
 
 
 
 
 
ccba0b6
adb1b3e
 
 
 
 
ccba0b6
5ef27d0
ccba0b6
 
5ef27d0
ccba0b6
 
 
5ef27d0
 
 
 
 
 
ccba0b6
5ef27d0
 
 
ccba0b6
 
5ef27d0
ccba0b6
5ef27d0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ccba0b6
 
 
 
5ef27d0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
import os
import speech_recognition as sr
import fitz  # PyMuPDF
from transformers import AutoTokenizer, AutoModel
import torch
import faiss
import numpy as np
from gtts import gTTS
from pydub import AudioSegment
from groq import Groq
from dotenv import load_dotenv
import gradio as gr

# Load environment variables
load_dotenv()

# Initialize Groq API client
client = Groq(api_key=os.getenv("GROQ_API_KEY"))

# Initialize model and tokenizer for embedding
tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
model = AutoModel.from_pretrained("bert-base-uncased")

# Initialize vector database
dimension = 768  # Size of BERT embeddings
index = faiss.IndexFlatL2(dimension)

# Folder path containing PDFs
pdf_folder_path = "agriculture_pdfs"

# Function to convert audio file to text
def audio_to_text(audio_file_path):
    recognizer = sr.Recognizer()
    try:
        with sr.AudioFile(audio_file_path) as source:
            audio = recognizer.record(source)
        text = recognizer.recognize_google(audio)
        return text
    except sr.UnknownValueError:
        return None
    except sr.RequestError:
        return None

# Function to convert audio to WAV format
def convert_to_wav(audio_file_path):
    if not audio_file_path:
        raise ValueError("Invalid audio file path")
    try:
        audio = AudioSegment.from_file(audio_file_path)
        wav_path = "temp_audio.wav"
        audio.export(wav_path, format="wav")
        return wav_path
    except Exception:
        return None

# Function to extract text from a PDF file
def extract_text_from_pdf(pdf_file):
    text = ""
    try:
        pdf_document = fitz.open(pdf_file)
        for page_num in range(len(pdf_document)):
            page = pdf_document.load_page(page_num)
            text += page.get_text()
    except Exception:
        pass
    return text

# Function to embed text using a transformer model
def embed_text(texts, model, tokenizer):
    try:
        inputs = tokenizer(texts, return_tensors='pt', truncation=True, padding=True)
        with torch.no_grad():
            embeddings = model(**inputs).last_hidden_state.mean(dim=1).numpy()
        return embeddings
    except Exception:
        return np.array([])  # Return empty array on error

# Function to convert text to speech
def text_to_speech(text, output_file):
    try:
        tts = gTTS(text=text, lang='en')
        tts.save(output_file)
        return output_file
    except Exception:
        return None

# Read all PDF files from the specified folder
pdf_paths = [os.path.join(pdf_folder_path, f) for f in os.listdir(pdf_folder_path) if f.endswith('.pdf')]

texts = []
for path in pdf_paths:
    pdf_text = extract_text_from_pdf(path)
    if pdf_text:
        texts.append(pdf_text)

# Embed PDF texts and add to vector database
embeddings = embed_text(texts, model, tokenizer)
if embeddings.size > 0:
    index.add(embeddings)

def process_audio(audio_file):
    if audio_file is None:
        return "No audio file provided", None

    audio_file_path = audio_file if isinstance(audio_file, str) else audio_file.name
    wav_path = convert_to_wav(audio_file_path)
    if wav_path is None:
        return "Error converting audio file to WAV format", None

    text = audio_to_text(wav_path)
    if not text:
        return "No valid text extracted from audio", None

    try:
        audio_embedding = embed_text([text], model, tokenizer)[0]
        if audio_embedding.size == 0:
            return "Error generating embedding for the audio text", None
        
        distances, indices = index.search(np.array([audio_embedding]), k=5)
        relevant_texts = [texts[idx] for idx in indices[0]]
        combined_text = " ".join(relevant_texts)
        if len(combined_text) > 1000:
            combined_text = combined_text[:1000]

        if not combined_text.strip():
            return "No relevant information found in the PDFs", None
        
        prompt = (
            f"The user has asked a query related to agricultural practices: {text}. "
            f"Here are relevant excerpts from the Better Crops South Asia document: {combined_text}. "
            "Based on this information, please provide accurate advice related to sustainable crop management, pest control, irrigation practices, and any recommendations for improving crop yield in the South Asian region."
        )

        chat_completion = client.chat.completions.create(
            messages=[
                {
                    "role": "user",
                    "content": prompt,
                }
            ],
            model="llama-3.1-70b-versatile",
        )
        response = chat_completion.choices[0].message.content
        output_file = "advice.mp3"
        output_path = text_to_speech(response, output_file)

        if output_path is None:
            return "Error generating speech output", None

        return response, output_path
    except Exception:
        return "An error occurred while processing the audio", None

# Enhanced Gradio interface customization
iface = gr.Interface(
    fn=process_audio,
    inputs=gr.Audio(type="filepath"),
    outputs=[gr.Textbox(label="Advice", lines=10), gr.Audio(label="Advice Audio")],
    title="๐ŸŒพ BetterCrops: Agriculture Support for Farmers",
    description=(
        "๐Ÿ’ก **BetterCrops** is designed to assist farmers with their crops by analyzing agricultural PDFs "
        "and generating personalized audio advice based on your voice queries."
    ),
    article=(
        "<div style='text-align: center; color: #003f6e;'>"
        "<h1 style='font-size: 36px; font-weight: bold;'>BetterCrops</h1>"
        "<h3 style='font-size: 24px; font-weight: normal;'>Empowering Farmers with AI-driven Insights</h3>"
        "</div>"
    ),
    theme="grass",
    css=(
        """
        body {
            background-color: #f0f5e9;
            color: #2f4f2f;
            font-family: 'Helvetica Neue', sans-serif;
        }
        h1, h3 {
            color: #003f6e;
        }
        .gradio-container {
            padding: 20px;
            background: linear-gradient(135deg, #a3cfba 0%, #e8f5e9 100%);
            border-radius: 15px;
        }
        .gradio-inputs, .gradio-outputs {
            margin: 20px;
            padding: 20px;
            background-color: #ffffff;
            border-radius: 10px;
            box-shadow: 0px 4px 8px rgba(0, 0, 0, 0.1);
        }
        """
    )
)

if __name__ == "__main__":
    iface.launch()