Spaces:
Sleeping
Sleeping
File size: 6,496 Bytes
adb1b3e ccba0b6 adb1b3e 5ef27d0 adb1b3e 5ef27d0 adb1b3e 5ef27d0 adb1b3e 5ef27d0 adb1b3e 5ef27d0 adb1b3e 5ef27d0 adb1b3e 8ec65bb adb1b3e 5ef27d0 adb1b3e 5ef27d0 adb1b3e ccba0b6 adb1b3e ccba0b6 5ef27d0 ccba0b6 5ef27d0 ccba0b6 5ef27d0 ccba0b6 5ef27d0 ccba0b6 5ef27d0 ccba0b6 5ef27d0 ccba0b6 5ef27d0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 |
import os
import speech_recognition as sr
import fitz # PyMuPDF
from transformers import AutoTokenizer, AutoModel
import torch
import faiss
import numpy as np
from gtts import gTTS
from pydub import AudioSegment
from groq import Groq
from dotenv import load_dotenv
import gradio as gr
# Load environment variables
load_dotenv()
# Initialize Groq API client
client = Groq(api_key=os.getenv("GROQ_API_KEY"))
# Initialize model and tokenizer for embedding
tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
model = AutoModel.from_pretrained("bert-base-uncased")
# Initialize vector database
dimension = 768 # Size of BERT embeddings
index = faiss.IndexFlatL2(dimension)
# Folder path containing PDFs
pdf_folder_path = "agriculture_pdfs"
# Function to convert audio file to text
def audio_to_text(audio_file_path):
recognizer = sr.Recognizer()
try:
with sr.AudioFile(audio_file_path) as source:
audio = recognizer.record(source)
text = recognizer.recognize_google(audio)
return text
except sr.UnknownValueError:
return None
except sr.RequestError:
return None
# Function to convert audio to WAV format
def convert_to_wav(audio_file_path):
if not audio_file_path:
raise ValueError("Invalid audio file path")
try:
audio = AudioSegment.from_file(audio_file_path)
wav_path = "temp_audio.wav"
audio.export(wav_path, format="wav")
return wav_path
except Exception:
return None
# Function to extract text from a PDF file
def extract_text_from_pdf(pdf_file):
text = ""
try:
pdf_document = fitz.open(pdf_file)
for page_num in range(len(pdf_document)):
page = pdf_document.load_page(page_num)
text += page.get_text()
except Exception:
pass
return text
# Function to embed text using a transformer model
def embed_text(texts, model, tokenizer):
try:
inputs = tokenizer(texts, return_tensors='pt', truncation=True, padding=True)
with torch.no_grad():
embeddings = model(**inputs).last_hidden_state.mean(dim=1).numpy()
return embeddings
except Exception:
return np.array([]) # Return empty array on error
# Function to convert text to speech
def text_to_speech(text, output_file):
try:
tts = gTTS(text=text, lang='en')
tts.save(output_file)
return output_file
except Exception:
return None
# Read all PDF files from the specified folder
pdf_paths = [os.path.join(pdf_folder_path, f) for f in os.listdir(pdf_folder_path) if f.endswith('.pdf')]
texts = []
for path in pdf_paths:
pdf_text = extract_text_from_pdf(path)
if pdf_text:
texts.append(pdf_text)
# Embed PDF texts and add to vector database
embeddings = embed_text(texts, model, tokenizer)
if embeddings.size > 0:
index.add(embeddings)
def process_audio(audio_file):
if audio_file is None:
return "No audio file provided", None
audio_file_path = audio_file if isinstance(audio_file, str) else audio_file.name
wav_path = convert_to_wav(audio_file_path)
if wav_path is None:
return "Error converting audio file to WAV format", None
text = audio_to_text(wav_path)
if not text:
return "No valid text extracted from audio", None
try:
audio_embedding = embed_text([text], model, tokenizer)[0]
if audio_embedding.size == 0:
return "Error generating embedding for the audio text", None
distances, indices = index.search(np.array([audio_embedding]), k=5)
relevant_texts = [texts[idx] for idx in indices[0]]
combined_text = " ".join(relevant_texts)
if len(combined_text) > 1000:
combined_text = combined_text[:1000]
if not combined_text.strip():
return "No relevant information found in the PDFs", None
prompt = (
f"The user has asked a query related to agricultural practices: {text}. "
f"Here are relevant excerpts from the Better Crops South Asia document: {combined_text}. "
"Based on this information, please provide accurate advice related to sustainable crop management, pest control, irrigation practices, and any recommendations for improving crop yield in the South Asian region."
)
chat_completion = client.chat.completions.create(
messages=[
{
"role": "user",
"content": prompt,
}
],
model="llama-3.1-70b-versatile",
)
response = chat_completion.choices[0].message.content
output_file = "advice.mp3"
output_path = text_to_speech(response, output_file)
if output_path is None:
return "Error generating speech output", None
return response, output_path
except Exception:
return "An error occurred while processing the audio", None
# Enhanced Gradio interface customization
iface = gr.Interface(
fn=process_audio,
inputs=gr.Audio(type="filepath"),
outputs=[gr.Textbox(label="Advice", lines=10), gr.Audio(label="Advice Audio")],
title="๐พ BetterCrops: Agriculture Support for Farmers",
description=(
"๐ก **BetterCrops** is designed to assist farmers with their crops by analyzing agricultural PDFs "
"and generating personalized audio advice based on your voice queries."
),
article=(
"<div style='text-align: center; color: #003f6e;'>"
"<h1 style='font-size: 36px; font-weight: bold;'>BetterCrops</h1>"
"<h3 style='font-size: 24px; font-weight: normal;'>Empowering Farmers with AI-driven Insights</h3>"
"</div>"
),
theme="grass",
css=(
"""
body {
background-color: #f0f5e9;
color: #2f4f2f;
font-family: 'Helvetica Neue', sans-serif;
}
h1, h3 {
color: #003f6e;
}
.gradio-container {
padding: 20px;
background: linear-gradient(135deg, #a3cfba 0%, #e8f5e9 100%);
border-radius: 15px;
}
.gradio-inputs, .gradio-outputs {
margin: 20px;
padding: 20px;
background-color: #ffffff;
border-radius: 10px;
box-shadow: 0px 4px 8px rgba(0, 0, 0, 0.1);
}
"""
)
)
if __name__ == "__main__":
iface.launch()
|