Spaces:
Runtime error
Runtime error
File size: 1,635 Bytes
74a11a6 7fc0cca 74a11a6 7fc0cca 74a11a6 7fc0cca 74a11a6 7fc0cca 74a11a6 7fc0cca 74a11a6 7fc0cca 74a11a6 7fc0cca |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 |
import gradio as gr
from transformers import AutoImageProcessor, Swin2SRForImageSuperResolution
from PIL import Image
import numpy as np
import torch
import requests
# Load the model and processor
processor = AutoImageProcessor.from_pretrained("caidas/swin2SR-realworld-sr-x4-64-bsrgan-psnr")
model = Swin2SRForImageSuperResolution.from_pretrained("caidas/swin2SR-realworld-sr-x4-64-bsrgan-psnr").to('cuda')
# Define the function for super-resolution
def super_resolve(image):
# Preprocess the input image
inputs = processor(images=image, return_tensors="pt").to('cuda')
# Perform super-resolution
with torch.no_grad():
outputs = model(**inputs)
# Get the reconstructed tensor from the outputs
reconstructed_tensor = outputs.reconstruction
# Move the tensor to the CPU and convert it to a NumPy array
image_tensor = reconstructed_tensor.squeeze().cpu()
image_np = image_tensor.permute(1, 2, 0).numpy() # Permute to make it HxWxC
# Rescale the values from [0, 1] to [0, 255]
image_np = np.clip(image_np, 0, 1)
image_np = (image_np * 255).astype(np.uint8)
# Convert the NumPy array back to an image
output_image = Image.fromarray(image_np)
return output_image
# Create the Gradio interface
inputs = gr.inputs.Image(type="pil", label="Upload an Image")
outputs = gr.outputs.Image(type="pil", label="Super-Resolved Image")
gr.Interface(fn=super_resolve, inputs=inputs, outputs=outputs, title="Image Super-Resolution with Swin2SR",
description="Upload an image to upscale it using the Swin2SR model for real-world super-resolution."
).launch()
|