Update app.py
Browse files
app.py
CHANGED
@@ -100,90 +100,93 @@ class ImageAnalyzer:
|
|
100 |
])
|
101 |
|
102 |
def preprocess_image(self, image: Image.Image) -> Dict[str, Any]:
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
# Edge detection for crack analysis
|
119 |
-
gray = cv2.cvtColor(img_array, cv2.COLOR_RGB2GRAY)
|
120 |
-
edges = cv2.Canny(gray, 100, 200)
|
121 |
-
stats["edge_density"] = np.mean(edges > 0)
|
122 |
-
|
123 |
-
# Color analysis for rust detection
|
124 |
-
hsv = cv2.cvtColor(img_array, cv2.COLOR_RGB2HSV)
|
125 |
-
rust_mask = cv2.inRange(hsv, np.array([0, 50, 50]), np.array([30, 255, 255]))
|
126 |
-
stats["rust_percentage"] = np.mean(rust_mask > 0)
|
127 |
-
|
128 |
-
# Transform for model
|
129 |
-
model_input = self.transforms(image).unsqueeze(0).to(self.device)
|
130 |
-
|
131 |
-
return {
|
132 |
-
"model_input": model_input,
|
133 |
-
"stats": stats,
|
134 |
-
"edges": edges,
|
135 |
-
"rust_mask": rust_mask
|
136 |
-
}
|
137 |
-
except Exception as e:
|
138 |
-
logger.error(f"Preprocessing error: {e}")
|
139 |
-
return None
|
140 |
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
proc_data = self.preprocess_image(image)
|
146 |
-
if proc_data is None:
|
147 |
-
return None
|
148 |
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
155 |
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
|
|
|
|
|
|
|
|
187 |
|
188 |
def analyze_image_statistics(self, stats: Dict) -> Dict[str, Any]:
|
189 |
"""Analyze image statistics for additional insights"""
|
|
|
100 |
])
|
101 |
|
102 |
def preprocess_image(self, image: Image.Image) -> Dict[str, Any]:
|
103 |
+
"""Enhanced image preprocessing with multiple analyses"""
|
104 |
+
try:
|
105 |
+
# Convert to RGB if necessary
|
106 |
+
if image.mode != 'RGB':
|
107 |
+
image = image.convert('RGB')
|
108 |
+
|
109 |
+
# Basic image statistics
|
110 |
+
img_array = np.array(image)
|
111 |
+
stats = {
|
112 |
+
"mean_brightness": np.mean(img_array),
|
113 |
+
"std_brightness": np.std(img_array),
|
114 |
+
"size": image.size,
|
115 |
+
"aspect_ratio": image.size[0] / image.size[1]
|
116 |
+
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
117 |
|
118 |
+
# Edge detection for crack analysis
|
119 |
+
gray = cv2.cvtColor(img_array, cv2.COLOR_RGB2GRAY)
|
120 |
+
edges = cv2.Canny(gray, 100, 200)
|
121 |
+
stats["edge_density"] = np.mean(edges > 0)
|
|
|
|
|
|
|
122 |
|
123 |
+
# Color analysis for rust detection
|
124 |
+
hsv = cv2.cvtColor(img_array, cv2.COLOR_RGB2HSV)
|
125 |
+
rust_mask = cv2.inRange(hsv, np.array([0, 50, 50]), np.array([30, 255, 255]))
|
126 |
+
stats["rust_percentage"] = np.mean(rust_mask > 0)
|
127 |
+
|
128 |
+
# Transform for model
|
129 |
+
model_input = self.transforms(image).unsqueeze(0).to(self.device)
|
130 |
+
|
131 |
+
return {
|
132 |
+
"model_input": model_input,
|
133 |
+
"stats": stats,
|
134 |
+
"edges": edges,
|
135 |
+
"rust_mask": rust_mask
|
136 |
+
}
|
137 |
+
except Exception as e:
|
138 |
+
logger.error(f"Preprocessing error: {e}")
|
139 |
+
return None
|
140 |
+
|
141 |
+
|
142 |
+
def detect_defects(self, image: Image.Image) -> Dict[str, Any]:
|
143 |
+
"""Enhanced defect detection with multiple analysis methods"""
|
144 |
+
try:
|
145 |
+
# Preprocess image
|
146 |
+
proc_data = self.preprocess_image(image)
|
147 |
+
if proc_data is None:
|
148 |
+
logger.error("Image preprocessing failed.")
|
149 |
+
return None # Early return if preprocessing failed
|
150 |
+
|
151 |
+
# Model prediction
|
152 |
+
with torch.no_grad():
|
153 |
+
outputs = self.model(proc_data["model_input"])
|
154 |
|
155 |
+
# Get probabilities
|
156 |
+
probabilities = torch.nn.functional.softmax(outputs.logits, dim=1)
|
157 |
+
|
158 |
+
# Convert to dictionary
|
159 |
+
defect_probs = {
|
160 |
+
self.defect_classes[i]: float(probabilities[0][i])
|
161 |
+
for i in range(len(self.defect_classes))
|
162 |
+
}
|
163 |
+
|
164 |
+
# Generate attention heatmap
|
165 |
+
attention_weights = outputs.attentions[-1].mean(dim=1)[0] if hasattr(outputs, 'attentions') else None
|
166 |
+
heatmap = self.generate_heatmap(attention_weights, image.size) if attention_weights is not None else None
|
167 |
+
|
168 |
+
# Additional analysis based on image statistics
|
169 |
+
additional_analysis = self.analyze_image_statistics(proc_data["stats"])
|
170 |
+
|
171 |
+
# Combine all results
|
172 |
+
result = {
|
173 |
+
"defect_probabilities": defect_probs,
|
174 |
+
"heatmap": heatmap,
|
175 |
+
"image_statistics": proc_data["stats"],
|
176 |
+
"additional_analysis": additional_analysis,
|
177 |
+
"edge_detection": proc_data["edges"],
|
178 |
+
"rust_detection": proc_data["rust_mask"],
|
179 |
+
"timestamp": datetime.now().isoformat()
|
180 |
+
}
|
181 |
+
|
182 |
+
# Save to history
|
183 |
+
self.history.append(result)
|
184 |
+
|
185 |
+
return result
|
186 |
+
except Exception as e:
|
187 |
+
logger.error(f"Defect detection error: {e}")
|
188 |
+
return None
|
189 |
+
|
190 |
|
191 |
def analyze_image_statistics(self, stats: Dict) -> Dict[str, Any]:
|
192 |
"""Analyze image statistics for additional insights"""
|