Update app.py
Browse files
app.py
CHANGED
@@ -1,313 +1,98 @@
|
|
1 |
import streamlit as st
|
2 |
-
import os
|
3 |
-
from groq import Groq
|
4 |
-
from transformers import ViTForImageClassification, ViTImageProcessor
|
5 |
-
from sentence_transformers import SentenceTransformer
|
6 |
-
from PIL import Image
|
7 |
import torch
|
|
|
8 |
import numpy as np
|
9 |
-
from
|
10 |
-
import faiss
|
11 |
-
import json
|
12 |
-
import cv2
|
13 |
-
import logging
|
14 |
-
from datetime import datetime
|
15 |
import matplotlib.pyplot as plt
|
|
|
16 |
|
17 |
# Setup logging
|
18 |
logging.basicConfig(level=logging.INFO)
|
19 |
logger = logging.getLogger(__name__)
|
20 |
|
21 |
-
|
22 |
-
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
23 |
-
|
24 |
-
@st.cache_resource
|
25 |
-
def load_vit_model():
|
26 |
-
"""Load and cache the ViT model"""
|
27 |
-
try:
|
28 |
-
model = ViTForImageClassification.from_pretrained(
|
29 |
-
"google/vit-base-patch16-224",
|
30 |
-
num_labels=3, # Number of defect classes
|
31 |
-
ignore_mismatched_sizes=True
|
32 |
-
)
|
33 |
-
return model.to(DEVICE)
|
34 |
-
except Exception as e:
|
35 |
-
logger.error(f"Error loading ViT model: {e}")
|
36 |
-
return None
|
37 |
-
|
38 |
-
@st.cache_resource
|
39 |
-
def load_vit_processor():
|
40 |
-
"""Load and cache the ViT processor"""
|
41 |
-
try:
|
42 |
-
return ViTImageProcessor.from_pretrained("google/vit-base-patch16-224")
|
43 |
-
except Exception as e:
|
44 |
-
logger.error(f"Error loading ViT processor: {e}")
|
45 |
-
return None
|
46 |
-
|
47 |
-
class RAGSystem:
|
48 |
def __init__(self):
|
49 |
-
self.
|
50 |
-
self.
|
51 |
-
self.vector_store = self.create_vector_store()
|
52 |
-
self.query_history = []
|
53 |
-
|
54 |
-
def load_knowledge_base(self) -> List[Dict]:
|
55 |
-
"""Load and preprocess knowledge base"""
|
56 |
-
kb = {
|
57 |
-
"spalling": [
|
58 |
-
{
|
59 |
-
"severity": "Critical",
|
60 |
-
"description": "Severe concrete spalling with exposed reinforcement",
|
61 |
-
"repair_method": "Remove deteriorated concrete, clean reinforcement",
|
62 |
-
"estimated_cost": "Very High ($15,000+)",
|
63 |
-
"immediate_action": "Evacuate area, install support"
|
64 |
-
}
|
65 |
-
],
|
66 |
-
"structural_cracks": [
|
67 |
-
{
|
68 |
-
"severity": "High",
|
69 |
-
"description": "Active structural cracks >5mm width",
|
70 |
-
"repair_method": "Structural analysis, epoxy injection",
|
71 |
-
"estimated_cost": "High ($10,000-$20,000)",
|
72 |
-
"immediate_action": "Install crack monitors"
|
73 |
-
}
|
74 |
-
]
|
75 |
-
}
|
76 |
-
|
77 |
-
documents = []
|
78 |
-
for category, items in kb.items():
|
79 |
-
for item in items:
|
80 |
-
doc_text = f"Category: {category}\n"
|
81 |
-
for key, value in item.items():
|
82 |
-
doc_text += f"{key}: {value}\n"
|
83 |
-
documents.append({"text": doc_text, "metadata": {"category": category}})
|
84 |
|
85 |
-
|
86 |
-
|
87 |
-
def create_vector_store(self):
|
88 |
-
"""Create FAISS vector store"""
|
89 |
-
texts = [doc["text"] for doc in self.knowledge_base]
|
90 |
-
embeddings = self.embedding_model.encode(texts)
|
91 |
-
dimension = embeddings.shape[1]
|
92 |
-
index = faiss.IndexFlatL2(dimension)
|
93 |
-
index.add(np.array(embeddings).astype('float32'))
|
94 |
-
return index
|
95 |
-
|
96 |
-
def get_relevant_context(self, query: str, k: int = 3) -> str:
|
97 |
-
"""Retrieve relevant context based on query"""
|
98 |
try:
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
self.
|
104 |
-
"timestamp": datetime.now().isoformat(),
|
105 |
-
"query": query
|
106 |
-
})
|
107 |
-
|
108 |
-
return context
|
109 |
except Exception as e:
|
110 |
-
logger.error(f"
|
111 |
-
|
112 |
-
|
113 |
-
class ImageAnalyzer:
|
114 |
-
def __init__(self):
|
115 |
-
self.device = DEVICE
|
116 |
-
self.defect_classes = ["spalling", "structural_cracks", "surface_deterioration"]
|
117 |
-
self.model = load_vit_model()
|
118 |
-
self.processor = load_vit_processor()
|
119 |
-
self.history = []
|
120 |
|
121 |
-
def
|
122 |
-
"""Preprocess image for model input"""
|
123 |
try:
|
124 |
# Ensure image is RGB
|
125 |
if image.mode != 'RGB':
|
126 |
image = image.convert('RGB')
|
127 |
|
128 |
-
# Process image
|
129 |
inputs = self.processor(images=image, return_tensors="pt")
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
return None
|
134 |
-
|
135 |
-
def analyze_image(self, image: Image.Image) -> Dict:
|
136 |
-
"""Analyze image for defects"""
|
137 |
-
try:
|
138 |
-
if self.model is None or self.processor is None:
|
139 |
-
raise ValueError("Model or processor not properly initialized")
|
140 |
-
|
141 |
-
# Preprocess image
|
142 |
-
inputs = self.preprocess_image(image)
|
143 |
-
if inputs is None:
|
144 |
-
raise ValueError("Image preprocessing failed")
|
145 |
-
|
146 |
-
# Get model predictions
|
147 |
with torch.no_grad():
|
148 |
outputs = self.model(**inputs)
|
149 |
|
150 |
-
#
|
151 |
-
|
152 |
-
|
153 |
-
self.defect_classes[i]: float(probabilities[0][i])
|
154 |
-
for i in range(len(self.defect_classes))
|
155 |
-
}
|
156 |
-
|
157 |
-
# Basic image statistics
|
158 |
-
img_array = np.array(image)
|
159 |
-
stats = {
|
160 |
-
"mean_brightness": float(np.mean(img_array)),
|
161 |
-
"image_size": f"{image.size[0]}x{image.size[1]}"
|
162 |
-
}
|
163 |
-
|
164 |
-
result = {
|
165 |
-
"defect_probabilities": defect_probs,
|
166 |
-
"image_statistics": stats,
|
167 |
-
"timestamp": datetime.now().isoformat()
|
168 |
-
}
|
169 |
-
|
170 |
-
self.history.append(result)
|
171 |
-
return result
|
172 |
|
173 |
except Exception as e:
|
174 |
-
logger.error(f"
|
175 |
return None
|
176 |
|
177 |
-
def get_groq_response(query: str, context: str) -> str:
|
178 |
-
"""Get response from Groq LLM"""
|
179 |
-
try:
|
180 |
-
client = Groq(api_key=os.getenv("GROQ_API_KEY"))
|
181 |
-
|
182 |
-
prompt = f"""Based on the following context about construction defects, answer the question.
|
183 |
-
Context: {context}
|
184 |
-
Question: {query}
|
185 |
-
Provide a detailed answer based on the context."""
|
186 |
-
|
187 |
-
response = client.chat.completions.create(
|
188 |
-
messages=[
|
189 |
-
{
|
190 |
-
"role": "system",
|
191 |
-
"content": "You are a construction defect analysis expert."
|
192 |
-
},
|
193 |
-
{
|
194 |
-
"role": "user",
|
195 |
-
"content": prompt
|
196 |
-
}
|
197 |
-
],
|
198 |
-
model="llama2-70b-4096",
|
199 |
-
temperature=0.7,
|
200 |
-
)
|
201 |
-
return response.choices[0].message.content
|
202 |
-
except Exception as e:
|
203 |
-
logger.error(f"Groq API error: {e}")
|
204 |
-
return f"Error: Unable to get response from AI model. Please try again later."
|
205 |
-
|
206 |
def main():
|
207 |
-
st.
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
|
220 |
-
|
221 |
-
|
222 |
-
|
223 |
-
|
224 |
-
|
225 |
-
|
226 |
-
|
227 |
-
|
228 |
-
|
229 |
-
"Upload a construction image",
|
230 |
-
type=['jpg', 'jpeg', 'png'],
|
231 |
-
key="image_uploader"
|
232 |
-
)
|
233 |
-
|
234 |
-
if uploaded_file is not None:
|
235 |
-
try:
|
236 |
-
# Display upload progress
|
237 |
-
progress_bar = st.progress(0)
|
238 |
-
status_text = st.empty()
|
239 |
-
|
240 |
-
# Update progress
|
241 |
-
status_text.text("Loading image...")
|
242 |
-
progress_bar.progress(25)
|
243 |
-
|
244 |
-
# Load and display image
|
245 |
-
image = Image.open(uploaded_file)
|
246 |
-
st.image(image, caption="Uploaded Image", use_column_width=True)
|
247 |
-
|
248 |
-
# Update progress
|
249 |
-
status_text.text("Analyzing image...")
|
250 |
-
progress_bar.progress(50)
|
251 |
-
|
252 |
-
# Analyze image
|
253 |
-
results = st.session_state.image_analyzer.analyze_image(image)
|
254 |
-
progress_bar.progress(75)
|
255 |
|
256 |
if results:
|
257 |
-
|
258 |
-
progress_bar.progress(100)
|
259 |
|
260 |
-
|
|
|
261 |
|
262 |
# Create bar chart
|
263 |
-
|
264 |
-
|
265 |
-
|
266 |
-
probs = list(defect_probs.values())
|
267 |
ax.barh(defects, probs)
|
268 |
ax.set_xlim(0, 1)
|
269 |
-
|
270 |
st.pyplot(fig)
|
271 |
-
|
272 |
-
# Show image statistics
|
273 |
-
with st.expander("Image Details"):
|
274 |
-
st.json(results["image_statistics"])
|
275 |
else:
|
276 |
-
|
277 |
-
progress_bar.empty()
|
278 |
|
279 |
-
|
280 |
-
|
281 |
-
|
282 |
-
|
283 |
-
with col2:
|
284 |
-
st.header("Ask About Defects")
|
285 |
-
user_query = st.text_input(
|
286 |
-
"Enter your question about construction defects:",
|
287 |
-
help="Example: What are the repair methods for severe spalling?"
|
288 |
-
)
|
289 |
-
|
290 |
-
if user_query:
|
291 |
-
with st.spinner("Processing query..."):
|
292 |
-
context = st.session_state.rag_system.get_relevant_context(user_query)
|
293 |
-
response = get_groq_response(user_query, context)
|
294 |
-
|
295 |
-
st.subheader("AI Response")
|
296 |
-
st.write(response)
|
297 |
-
|
298 |
-
with st.expander("View Context Used"):
|
299 |
-
st.text(context)
|
300 |
-
|
301 |
-
# Sidebar for history
|
302 |
-
with st.sidebar:
|
303 |
-
st.header("Analysis History")
|
304 |
-
if st.button("Show Recent Analyses"):
|
305 |
-
if st.session_state.image_analyzer.history:
|
306 |
-
for analysis in st.session_state.image_analyzer.history[-5:]:
|
307 |
-
st.write(f"Analysis from: {analysis['timestamp']}")
|
308 |
-
st.json(analysis["defect_probabilities"])
|
309 |
-
else:
|
310 |
-
st.write("No analyses yet")
|
311 |
|
312 |
if __name__ == "__main__":
|
313 |
main()
|
|
|
1 |
import streamlit as st
|
|
|
|
|
|
|
|
|
|
|
2 |
import torch
|
3 |
+
from PIL import Image
|
4 |
import numpy as np
|
5 |
+
from transformers import ViTForImageClassification, ViTImageProcessor
|
|
|
|
|
|
|
|
|
|
|
6 |
import matplotlib.pyplot as plt
|
7 |
+
import logging
|
8 |
|
9 |
# Setup logging
|
10 |
logging.basicConfig(level=logging.INFO)
|
11 |
logger = logging.getLogger(__name__)
|
12 |
|
13 |
+
class ImageAnalyzer:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
def __init__(self):
|
15 |
+
self.device = "cuda" if torch.cuda.is_available() else "cpu"
|
16 |
+
self.defect_classes = ["spalling", "structural_cracks", "surface_deterioration"]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
|
18 |
+
# Load model and processor
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
try:
|
20 |
+
self.model = ViTForImageClassification.from_pretrained(
|
21 |
+
"google/vit-base-patch16-224",
|
22 |
+
num_labels=len(self.defect_classes)
|
23 |
+
).to(self.device)
|
24 |
+
self.processor = ViTImageProcessor.from_pretrained("google/vit-base-patch16-224")
|
|
|
|
|
|
|
|
|
|
|
25 |
except Exception as e:
|
26 |
+
logger.error(f"Model initialization error: {e}")
|
27 |
+
self.model = None
|
28 |
+
self.processor = None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
|
30 |
+
def analyze_image(self, image):
|
|
|
31 |
try:
|
32 |
# Ensure image is RGB
|
33 |
if image.mode != 'RGB':
|
34 |
image = image.convert('RGB')
|
35 |
|
36 |
+
# Process image
|
37 |
inputs = self.processor(images=image, return_tensors="pt")
|
38 |
+
inputs = {k: v.to(self.device) for k, v in inputs.items()}
|
39 |
+
|
40 |
+
# Get predictions
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
with torch.no_grad():
|
42 |
outputs = self.model(**inputs)
|
43 |
|
44 |
+
# Get probabilities
|
45 |
+
probs = torch.nn.functional.softmax(outputs.logits, dim=1)[0]
|
46 |
+
return {self.defect_classes[i]: float(probs[i]) for i in range(len(self.defect_classes))}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
47 |
|
48 |
except Exception as e:
|
49 |
+
logger.error(f"Analysis error: {e}")
|
50 |
return None
|
51 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
52 |
def main():
|
53 |
+
st.title("Construction Defect Analyzer")
|
54 |
+
|
55 |
+
# Initialize analyzer
|
56 |
+
if 'analyzer' not in st.session_state:
|
57 |
+
st.session_state.analyzer = ImageAnalyzer()
|
58 |
+
|
59 |
+
# File uploader
|
60 |
+
st.write("Upload a construction image for analysis")
|
61 |
+
uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"])
|
62 |
+
|
63 |
+
if uploaded_file is not None:
|
64 |
+
try:
|
65 |
+
# Display confirmation
|
66 |
+
st.write("Image received. Processing...")
|
67 |
+
|
68 |
+
# Read and display image
|
69 |
+
image = Image.open(uploaded_file)
|
70 |
+
st.image(image, caption='Uploaded Image', use_column_width=True)
|
71 |
+
|
72 |
+
# Analyze image
|
73 |
+
with st.spinner('Analyzing image...'):
|
74 |
+
results = st.session_state.analyzer.analyze_image(image)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
75 |
|
76 |
if results:
|
77 |
+
st.success('Analysis complete!')
|
|
|
78 |
|
79 |
+
# Display results
|
80 |
+
st.subheader("Defect Probabilities")
|
81 |
|
82 |
# Create bar chart
|
83 |
+
fig, ax = plt.subplots()
|
84 |
+
defects = list(results.keys())
|
85 |
+
probs = list(results.values())
|
|
|
86 |
ax.barh(defects, probs)
|
87 |
ax.set_xlim(0, 1)
|
88 |
+
plt.tight_layout()
|
89 |
st.pyplot(fig)
|
|
|
|
|
|
|
|
|
90 |
else:
|
91 |
+
st.error("Analysis failed. Please try again.")
|
|
|
92 |
|
93 |
+
except Exception as e:
|
94 |
+
st.error(f"Error: {str(e)}")
|
95 |
+
logger.error(f"Process error: {e}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
96 |
|
97 |
if __name__ == "__main__":
|
98 |
main()
|