Update app.py
Browse files
app.py
CHANGED
@@ -6,416 +6,359 @@ from sentence_transformers import SentenceTransformer
|
|
6 |
from PIL import Image
|
7 |
import torch
|
8 |
import numpy as np
|
9 |
-
from typing import List, Dict
|
10 |
import faiss
|
11 |
import json
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
|
13 |
-
#
|
14 |
-
|
15 |
-
|
16 |
-
return SentenceTransformer('all-MiniLM-L6-v2')
|
17 |
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
"
|
33 |
-
|
34 |
-
"severity": "Critical",
|
35 |
-
"description": "Severe concrete spalling with exposed reinforcement and section loss",
|
36 |
-
"repair_method": [
|
37 |
-
"Install temporary support",
|
38 |
-
"Remove deteriorated concrete",
|
39 |
-
"Clean and treat reinforcement",
|
40 |
-
"Apply corrosion inhibitor",
|
41 |
-
"Apply bonding agent",
|
42 |
-
"High-strength repair mortar",
|
43 |
-
"Surface treatment and waterproofing"
|
44 |
-
],
|
45 |
-
"estimated_cost": "Very High ($15,000+)",
|
46 |
-
"timeframe": "3-4 weeks",
|
47 |
-
"location": "Primary structural elements",
|
48 |
-
"required_expertise": "Structural Engineer + Specialist Contractor",
|
49 |
-
"immediate_action": "Evacuate area, install temporary support, prevent access",
|
50 |
-
"prevention": "Regular inspections, waterproofing, chloride protection",
|
51 |
-
"testing_required": ["Core testing", "Reinforcement scanning", "Chloride testing"],
|
52 |
-
"common_causes": [
|
53 |
-
"Reinforcement corrosion",
|
54 |
-
"Freeze-thaw cycles",
|
55 |
-
"Poor concrete cover",
|
56 |
-
"Chemical attack"
|
57 |
-
],
|
58 |
-
"safety_considerations": [
|
59 |
-
"Risk of structural failure",
|
60 |
-
"Falling concrete hazard",
|
61 |
-
"Worker safety during repairs"
|
62 |
-
]
|
63 |
-
},
|
64 |
-
{
|
65 |
-
"severity": "Moderate",
|
66 |
-
"description": "Surface spalling without exposed reinforcement",
|
67 |
-
"repair_method": [
|
68 |
-
"Remove loose concrete",
|
69 |
-
"Surface preparation",
|
70 |
-
"Apply repair mortar",
|
71 |
-
"Surface treatment"
|
72 |
-
],
|
73 |
-
"estimated_cost": "Medium ($5,000-$10,000)",
|
74 |
-
"timeframe": "1-2 weeks",
|
75 |
-
"location": "Non-structural elements",
|
76 |
-
"required_expertise": "Concrete Repair Specialist",
|
77 |
-
"immediate_action": "Remove loose material, protect from water ingress",
|
78 |
-
"prevention": "Surface sealers, proper drainage",
|
79 |
-
"testing_required": ["Surface adhesion testing", "Moisture testing"],
|
80 |
-
"common_causes": [
|
81 |
-
"Surface carbonation",
|
82 |
-
"Impact damage",
|
83 |
-
"Poor curing"
|
84 |
-
],
|
85 |
-
"safety_considerations": [
|
86 |
-
"Minor falling debris risk",
|
87 |
-
"Dust control during repairs"
|
88 |
-
]
|
89 |
-
}
|
90 |
-
],
|
91 |
-
"reinforcement_corrosion": [
|
92 |
-
{
|
93 |
-
"severity": "Critical",
|
94 |
-
"description": "Severe corrosion with >30% section loss",
|
95 |
-
"repair_method": [
|
96 |
-
"Structural support installation",
|
97 |
-
"Concrete removal around reinforcement",
|
98 |
-
"Reinforcement replacement",
|
99 |
-
"Corrosion protection application",
|
100 |
-
"High-strength concrete repair",
|
101 |
-
"Cathodic protection installation"
|
102 |
-
],
|
103 |
-
"estimated_cost": "Critical ($20,000+)",
|
104 |
-
"timeframe": "4-6 weeks",
|
105 |
-
"location": "Load-bearing elements",
|
106 |
-
"required_expertise": "Senior Structural Engineer",
|
107 |
-
"immediate_action": "Immediate evacuation, emergency shoring",
|
108 |
-
"prevention": "Waterproofing, cathodic protection",
|
109 |
-
"testing_required": [
|
110 |
-
"Half-cell potential survey",
|
111 |
-
"Concrete resistivity testing",
|
112 |
-
"Chloride analysis",
|
113 |
-
"Carbonation testing"
|
114 |
-
],
|
115 |
-
"common_causes": [
|
116 |
-
"Chloride contamination",
|
117 |
-
"Carbonation",
|
118 |
-
"Stray electrical currents",
|
119 |
-
"Poor concrete quality"
|
120 |
-
],
|
121 |
-
"safety_considerations": [
|
122 |
-
"Structural collapse risk",
|
123 |
-
"Electrical hazards during testing",
|
124 |
-
"Confined space entry"
|
125 |
-
]
|
126 |
-
}
|
127 |
-
],
|
128 |
-
"structural_cracks": [
|
129 |
-
{
|
130 |
-
"severity": "High",
|
131 |
-
"description": "Active structural cracks >5mm width",
|
132 |
-
"repair_method": [
|
133 |
-
"Structural analysis",
|
134 |
-
"Crack monitoring",
|
135 |
-
"Epoxy injection",
|
136 |
-
"Carbon fiber reinforcement",
|
137 |
-
"Load path modification"
|
138 |
-
],
|
139 |
-
"estimated_cost": "High ($10,000-$20,000)",
|
140 |
-
"timeframe": "2-4 weeks",
|
141 |
-
"location": "Primary structural elements",
|
142 |
-
"required_expertise": "Structural Engineer",
|
143 |
-
"immediate_action": "Install crack monitors, restrict loading",
|
144 |
-
"prevention": "Proper design, joint maintenance",
|
145 |
-
"testing_required": [
|
146 |
-
"Crack movement monitoring",
|
147 |
-
"Load testing",
|
148 |
-
"Concrete strength testing"
|
149 |
-
],
|
150 |
-
"common_causes": [
|
151 |
-
"Overloading",
|
152 |
-
"Foundation settlement",
|
153 |
-
"Thermal movements",
|
154 |
-
"Design deficiencies"
|
155 |
-
],
|
156 |
-
"safety_considerations": [
|
157 |
-
"Structural stability",
|
158 |
-
"Water infiltration",
|
159 |
-
"Working at height"
|
160 |
-
]
|
161 |
-
}
|
162 |
-
],
|
163 |
-
"water_damage": [
|
164 |
-
{
|
165 |
-
"severity": "Medium",
|
166 |
-
"description": "Active water infiltration with deterioration",
|
167 |
-
"repair_method": [
|
168 |
-
"Water source identification",
|
169 |
-
"Drainage improvement",
|
170 |
-
"Waterproofing membrane installation",
|
171 |
-
"Joint sealing",
|
172 |
-
"Surface treatment"
|
173 |
-
],
|
174 |
-
"estimated_cost": "Medium ($5,000-$15,000)",
|
175 |
-
"timeframe": "1-3 weeks",
|
176 |
-
"location": "Various locations",
|
177 |
-
"required_expertise": "Waterproofing Specialist",
|
178 |
-
"immediate_action": "Water diversion, dehumidification",
|
179 |
-
"prevention": "Regular maintenance, proper drainage",
|
180 |
-
"testing_required": [
|
181 |
-
"Moisture mapping",
|
182 |
-
"Drainage assessment",
|
183 |
-
"Permeability testing"
|
184 |
-
],
|
185 |
-
"common_causes": [
|
186 |
-
"Failed waterproofing",
|
187 |
-
"Poor drainage",
|
188 |
-
"Joint failure",
|
189 |
-
"Condensation"
|
190 |
-
],
|
191 |
-
"safety_considerations": [
|
192 |
-
"Slip hazards",
|
193 |
-
"Electrical safety",
|
194 |
-
"Mold growth"
|
195 |
-
]
|
196 |
-
}
|
197 |
-
],
|
198 |
-
"surface_deterioration": [
|
199 |
-
{
|
200 |
-
"severity": "Low",
|
201 |
-
"description": "Surface scaling and deterioration",
|
202 |
-
"repair_method": [
|
203 |
-
"Surface cleaning",
|
204 |
-
"Repair material application",
|
205 |
-
"Surface treatment",
|
206 |
-
"Protective coating"
|
207 |
-
],
|
208 |
-
"estimated_cost": "Low ($2,000-$5,000)",
|
209 |
-
"timeframe": "3-5 days",
|
210 |
-
"location": "Exposed surfaces",
|
211 |
-
"required_expertise": "Concrete Repair Technician",
|
212 |
-
"immediate_action": "Clean and protect surface",
|
213 |
-
"prevention": "Regular maintenance, surface protection",
|
214 |
-
"testing_required": [
|
215 |
-
"Surface strength testing",
|
216 |
-
"Coating adhesion tests"
|
217 |
-
],
|
218 |
-
"common_causes": [
|
219 |
-
"Freeze-thaw damage",
|
220 |
-
"Chemical exposure",
|
221 |
-
"Poor finishing",
|
222 |
-
"Abrasion"
|
223 |
-
],
|
224 |
-
"safety_considerations": [
|
225 |
-
"Dust control",
|
226 |
-
"Chemical handling",
|
227 |
-
"PPE requirements"
|
228 |
-
]
|
229 |
-
}
|
230 |
-
],
|
231 |
-
"alkali_silica_reaction": [
|
232 |
-
{
|
233 |
-
"severity": "High",
|
234 |
-
"description": "Concrete expansion and map cracking due to ASR",
|
235 |
-
"repair_method": [
|
236 |
-
"Expansion monitoring",
|
237 |
-
"Moisture control",
|
238 |
-
"Crack sealing",
|
239 |
-
"Surface treatment",
|
240 |
-
"Structural strengthening"
|
241 |
-
],
|
242 |
-
"estimated_cost": "High ($15,000-$25,000)",
|
243 |
-
"timeframe": "3-5 weeks",
|
244 |
-
"location": "Concrete elements",
|
245 |
-
"required_expertise": "Materials Engineer + Structural Engineer",
|
246 |
-
"immediate_action": "Monitor expansion, control moisture",
|
247 |
-
"prevention": "Proper aggregate selection, pozzolans",
|
248 |
-
"testing_required": [
|
249 |
-
"Petrographic analysis",
|
250 |
-
"Expansion testing",
|
251 |
-
"Humidity monitoring"
|
252 |
-
],
|
253 |
-
"common_causes": [
|
254 |
-
"Reactive aggregates",
|
255 |
-
"High alkali cement",
|
256 |
-
"Moisture presence",
|
257 |
-
"Temperature cycles"
|
258 |
-
],
|
259 |
-
"safety_considerations": [
|
260 |
-
"Progressive deterioration",
|
261 |
-
"Structural integrity",
|
262 |
-
"Long-term monitoring"
|
263 |
-
]
|
264 |
-
}
|
265 |
-
]
|
266 |
}
|
267 |
-
|
268 |
-
# Convert nested knowledge base into flat documents
|
269 |
-
documents = []
|
270 |
-
for category, items in kb.items():
|
271 |
-
for item in items:
|
272 |
-
# Create a text representation of the document
|
273 |
-
doc_text = f"Category: {category}\n"
|
274 |
-
for key, value in item.items():
|
275 |
-
if isinstance(value, list):
|
276 |
-
doc_text += f"{key}: {', '.join(value)}\n"
|
277 |
-
else:
|
278 |
-
doc_text += f"{key}: {value}\n"
|
279 |
-
documents.append({
|
280 |
-
"text": doc_text,
|
281 |
-
"metadata": {"category": category}
|
282 |
-
})
|
283 |
-
|
284 |
-
return documents
|
285 |
|
286 |
-
|
287 |
-
|
288 |
-
|
289 |
-
|
290 |
-
|
291 |
-
|
292 |
-
|
293 |
-
|
294 |
-
|
295 |
-
|
296 |
-
|
297 |
-
|
298 |
-
|
299 |
-
|
300 |
-
|
301 |
-
|
302 |
-
|
303 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
304 |
|
305 |
-
#
|
306 |
-
|
307 |
-
|
308 |
-
|
|
|
309 |
|
310 |
-
|
|
|
|
|
311 |
|
312 |
-
|
313 |
-
""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
314 |
# Generate query embedding
|
315 |
query_embedding = self.embedding_model.encode([query])
|
316 |
|
317 |
# Search for similar documents
|
318 |
D, I = self.vector_store.search(np.array(query_embedding).astype('float32'), k)
|
319 |
|
320 |
-
#
|
321 |
-
|
322 |
-
|
323 |
-
|
324 |
-
|
325 |
-
|
326 |
-
|
327 |
-
|
328 |
-
prompt = f"""Based on the following context about construction defects, please answer the question.
|
329 |
-
Context:
|
330 |
-
{context}
|
331 |
-
Question: {query}
|
332 |
-
Please provide a detailed and specific answer based on the given context."""
|
333 |
-
|
334 |
-
response = client.chat.completions.create(
|
335 |
-
messages=[
|
336 |
-
{
|
337 |
-
"role": "system",
|
338 |
-
"content": "You are a construction defect analysis expert. Provide detailed, accurate answers based on the given context."
|
339 |
-
},
|
340 |
-
{
|
341 |
-
"role": "user",
|
342 |
-
"content": prompt
|
343 |
-
}
|
344 |
-
],
|
345 |
-
model="llama-3.3-70b-versatile",
|
346 |
-
)
|
347 |
-
return response.choices[0].message.content
|
348 |
-
except Exception as e:
|
349 |
-
return f"Error: {str(e)}"
|
350 |
|
351 |
-
|
352 |
st.set_page_config(
|
353 |
-
page_title="Construction Defect
|
354 |
page_icon="🏗️",
|
355 |
layout="wide"
|
356 |
)
|
357 |
|
358 |
-
st.title("🏗️ Construction Defect
|
359 |
|
360 |
-
# Initialize
|
361 |
if 'rag_system' not in st.session_state:
|
362 |
-
st.session_state.rag_system =
|
|
|
|
|
363 |
|
364 |
-
#
|
365 |
-
|
366 |
-
"
|
367 |
-
|
368 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
369 |
|
370 |
-
#
|
371 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
372 |
|
373 |
-
|
374 |
-
|
375 |
-
|
376 |
-
context = st.session_state.rag_system.get_relevant_context(user_query)
|
377 |
|
378 |
-
#
|
379 |
-
|
380 |
-
st.subheader("Retrieved Context")
|
381 |
-
st.text(context)
|
382 |
|
383 |
-
|
384 |
-
|
385 |
-
|
386 |
-
|
387 |
-
|
388 |
-
|
389 |
-
|
390 |
-
|
391 |
-
|
392 |
-
|
393 |
-
|
394 |
-
|
395 |
-
|
396 |
-
|
397 |
-
|
398 |
-
|
399 |
-
|
400 |
-
|
401 |
-
|
402 |
-
|
403 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
404 |
context = st.session_state.rag_system.get_relevant_context(user_query)
|
|
|
|
|
|
|
|
|
405 |
|
406 |
-
|
407 |
-
|
408 |
-
|
409 |
-
st.write(response)
|
410 |
-
|
411 |
-
# Display knowledge base sections
|
412 |
-
if st.checkbox("Show Knowledge Base"):
|
413 |
-
st.subheader("Available Knowledge Base")
|
414 |
-
kb_data = st.session_state.rag_system.knowledge_base
|
415 |
-
for doc in kb_data:
|
416 |
-
category = doc["metadata"]["category"]
|
417 |
-
with st.expander(category.title()):
|
418 |
-
st.text(doc["text"])
|
419 |
|
420 |
if __name__ == "__main__":
|
421 |
main()
|
|
|
6 |
from PIL import Image
|
7 |
import torch
|
8 |
import numpy as np
|
9 |
+
from typing import List, Dict, Tuple, Optional, Any
|
10 |
import faiss
|
11 |
import json
|
12 |
+
import torchvision.transforms.functional as TF
|
13 |
+
from torchvision import transforms
|
14 |
+
import cv2
|
15 |
+
import pandas as pd
|
16 |
+
from datetime import datetime
|
17 |
+
import logging
|
18 |
|
19 |
+
# Setup logging
|
20 |
+
logging.basicConfig(level=logging.INFO)
|
21 |
+
logger = logging.getLogger(__name__)
|
|
|
22 |
|
23 |
+
class ConfigManager:
|
24 |
+
"""Manages configuration settings for the application"""
|
25 |
+
DEFAULT_CONFIG = {
|
26 |
+
"model_settings": {
|
27 |
+
"vit_model": "google/vit-base-patch16-224",
|
28 |
+
"sentence_transformer": "all-MiniLM-L6-v2",
|
29 |
+
"groq_model": "llama-3.3-70b-versatile"
|
30 |
+
},
|
31 |
+
"analysis_settings": {
|
32 |
+
"confidence_threshold": 0.5,
|
33 |
+
"max_defects": 3,
|
34 |
+
"heatmap_intensity": 0.7
|
35 |
+
},
|
36 |
+
"rag_settings": {
|
37 |
+
"num_relevant_docs": 3,
|
38 |
+
"similarity_threshold": 0.75
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
}
|
40 |
+
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
|
42 |
+
@staticmethod
|
43 |
+
def load_config():
|
44 |
+
"""Load configuration with fallback to defaults"""
|
45 |
+
try:
|
46 |
+
if os.path.exists('config.json'):
|
47 |
+
with open('config.json', 'r') as f:
|
48 |
+
config = json.load(f)
|
49 |
+
return {**ConfigManager.DEFAULT_CONFIG, **config}
|
50 |
+
except Exception as e:
|
51 |
+
logger.warning(f"Error loading config: {e}")
|
52 |
+
return ConfigManager.DEFAULT_CONFIG
|
53 |
+
|
54 |
+
config = ConfigManager.load_config()
|
55 |
+
|
56 |
+
class ImageAnalyzer:
|
57 |
+
def __init__(self):
|
58 |
+
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
59 |
+
self.config = config["model_settings"]
|
60 |
+
self.analysis_config = config["analysis_settings"]
|
61 |
+
self.defect_classes = [
|
62 |
+
"spalling", "reinforcement_corrosion", "structural_cracks",
|
63 |
+
"water_damage", "surface_deterioration", "alkali_silica_reaction",
|
64 |
+
"concrete_delamination", "honeycomb", "scaling",
|
65 |
+
"efflorescence", "joint_deterioration", "carbonation"
|
66 |
+
]
|
67 |
+
self.initialize_models()
|
68 |
+
self.history = []
|
69 |
+
|
70 |
+
@st.cache_resource
|
71 |
+
def initialize_models(self):
|
72 |
+
"""Initialize all required models"""
|
73 |
+
try:
|
74 |
+
# Initialize ViT model
|
75 |
+
self.model = ViTForImageClassification.from_pretrained(
|
76 |
+
self.config["vit_model"],
|
77 |
+
num_labels=len(self.defect_classes),
|
78 |
+
ignore_mismatched_sizes=True
|
79 |
+
).to(self.device)
|
80 |
+
|
81 |
+
# Initialize image processor
|
82 |
+
self.processor = ViTImageProcessor.from_pretrained(self.config["vit_model"])
|
83 |
+
|
84 |
+
# Initialize transformations pipeline
|
85 |
+
self.transforms = self._setup_transforms()
|
86 |
+
|
87 |
+
return True
|
88 |
+
except Exception as e:
|
89 |
+
logger.error(f"Model initialization error: {e}")
|
90 |
+
return False
|
91 |
+
|
92 |
+
def _setup_transforms(self):
|
93 |
+
"""Setup image transformation pipeline"""
|
94 |
+
return transforms.Compose([
|
95 |
+
transforms.Resize((224, 224)),
|
96 |
+
transforms.ToTensor(),
|
97 |
+
transforms.Normalize(mean=[0.485, 0.456, 0.406],
|
98 |
+
std=[0.229, 0.224, 0.225]),
|
99 |
+
transforms.RandomAdjustSharpness(2),
|
100 |
+
transforms.ColorJitter(brightness=0.2, contrast=0.2)
|
101 |
+
])
|
102 |
+
|
103 |
+
def preprocess_image(self, image: Image.Image) -> Dict[str, Any]:
|
104 |
+
"""Enhanced image preprocessing with multiple analyses"""
|
105 |
+
try:
|
106 |
+
# Convert to RGB if necessary
|
107 |
+
if image.mode != 'RGB':
|
108 |
+
image = image.convert('RGB')
|
109 |
+
|
110 |
+
# Basic image statistics
|
111 |
+
img_array = np.array(image)
|
112 |
+
stats = {
|
113 |
+
"mean_brightness": np.mean(img_array),
|
114 |
+
"std_brightness": np.std(img_array),
|
115 |
+
"size": image.size,
|
116 |
+
"aspect_ratio": image.size[0] / image.size[1]
|
117 |
+
}
|
118 |
+
|
119 |
+
# Edge detection for crack analysis
|
120 |
+
gray = cv2.cvtColor(img_array, cv2.COLOR_RGB2GRAY)
|
121 |
+
edges = cv2.Canny(gray, 100, 200)
|
122 |
+
stats["edge_density"] = np.mean(edges > 0)
|
123 |
+
|
124 |
+
# Color analysis for rust detection
|
125 |
+
hsv = cv2.cvtColor(img_array, cv2.COLOR_RGB2HSV)
|
126 |
+
rust_mask = cv2.inRange(hsv, np.array([0, 50, 50]), np.array([30, 255, 255]))
|
127 |
+
stats["rust_percentage"] = np.mean(rust_mask > 0)
|
128 |
+
|
129 |
+
# Transform for model
|
130 |
+
model_input = self.transforms(image).unsqueeze(0).to(self.device)
|
131 |
+
|
132 |
+
return {
|
133 |
+
"model_input": model_input,
|
134 |
+
"stats": stats,
|
135 |
+
"edges": edges,
|
136 |
+
"rust_mask": rust_mask
|
137 |
+
}
|
138 |
+
except Exception as e:
|
139 |
+
logger.error(f"Preprocessing error: {e}")
|
140 |
+
return None
|
141 |
+
|
142 |
+
def detect_defects(self, image: Image.Image) -> Dict[str, Any]:
|
143 |
+
"""Enhanced defect detection with multiple analysis methods"""
|
144 |
+
try:
|
145 |
+
# Preprocess image
|
146 |
+
proc_data = self.preprocess_image(image)
|
147 |
+
if proc_data is None:
|
148 |
+
return None
|
149 |
+
|
150 |
+
# Model prediction
|
151 |
+
with torch.no_grad():
|
152 |
+
outputs = self.model(proc_data["model_input"])
|
153 |
+
|
154 |
+
# Get probabilities
|
155 |
+
probabilities = torch.nn.functional.softmax(outputs.logits, dim=1)
|
156 |
+
|
157 |
+
# Convert to dictionary
|
158 |
+
defect_probs = {
|
159 |
+
self.defect_classes[i]: float(probabilities[0][i])
|
160 |
+
for i in range(len(self.defect_classes))
|
161 |
+
}
|
162 |
+
|
163 |
+
# Generate attention heatmap
|
164 |
+
attention_weights = outputs.attentions[-1].mean(dim=1)[0] if hasattr(outputs, 'attentions') else None
|
165 |
+
heatmap = self.generate_heatmap(attention_weights, image.size) if attention_weights is not None else None
|
166 |
+
|
167 |
+
# Additional analysis based on image statistics
|
168 |
+
additional_analysis = self.analyze_image_statistics(proc_data["stats"])
|
169 |
+
|
170 |
+
# Combine all results
|
171 |
+
result = {
|
172 |
+
"defect_probabilities": defect_probs,
|
173 |
+
"heatmap": heatmap,
|
174 |
+
"image_statistics": proc_data["stats"],
|
175 |
+
"additional_analysis": additional_analysis,
|
176 |
+
"edge_detection": proc_data["edges"],
|
177 |
+
"rust_detection": proc_data["rust_mask"],
|
178 |
+
"timestamp": datetime.now().isoformat()
|
179 |
+
}
|
180 |
+
|
181 |
+
# Save to history
|
182 |
+
self.history.append(result)
|
183 |
+
|
184 |
+
return result
|
185 |
+
except Exception as e:
|
186 |
+
logger.error(f"Defect detection error: {e}")
|
187 |
+
return None
|
188 |
+
|
189 |
+
def analyze_image_statistics(self, stats: Dict) -> Dict[str, Any]:
|
190 |
+
"""Analyze image statistics for additional insights"""
|
191 |
+
analysis = {}
|
192 |
|
193 |
+
# Brightness analysis
|
194 |
+
if stats["mean_brightness"] < 50:
|
195 |
+
analysis["lighting_condition"] = "Poor lighting - may affect accuracy"
|
196 |
+
elif stats["mean_brightness"] > 200:
|
197 |
+
analysis["lighting_condition"] = "Overexposed - may affect accuracy"
|
198 |
|
199 |
+
# Edge density analysis
|
200 |
+
if stats["edge_density"] > 0.1:
|
201 |
+
analysis["crack_likelihood"] = "High crack probability based on edge detection"
|
202 |
|
203 |
+
# Rust analysis
|
204 |
+
if stats["rust_percentage"] > 0.05:
|
205 |
+
analysis["corrosion_indicator"] = "Possible corrosion detected"
|
206 |
+
|
207 |
+
return analysis
|
208 |
+
|
209 |
+
def generate_heatmap(self, attention_weights: torch.Tensor, image_size: Tuple[int, int]) -> np.ndarray:
|
210 |
+
"""Generate enhanced attention heatmap"""
|
211 |
+
try:
|
212 |
+
if attention_weights is None:
|
213 |
+
return None
|
214 |
+
|
215 |
+
# Process attention weights
|
216 |
+
heatmap = attention_weights.cpu().numpy()
|
217 |
+
heatmap = cv2.resize(heatmap, image_size)
|
218 |
+
|
219 |
+
# Enhanced normalization
|
220 |
+
heatmap = np.maximum(heatmap, 0)
|
221 |
+
heatmap = (heatmap - heatmap.min()) / (heatmap.max() - heatmap.min() + 1e-8)
|
222 |
+
|
223 |
+
# Apply gamma correction
|
224 |
+
gamma = self.analysis_config["heatmap_intensity"]
|
225 |
+
heatmap = np.power(heatmap, gamma)
|
226 |
+
|
227 |
+
# Apply colormap
|
228 |
+
heatmap = (heatmap * 255).astype(np.uint8)
|
229 |
+
heatmap = cv2.applyColorMap(heatmap, cv2.COLORMAP_JET)
|
230 |
+
|
231 |
+
return heatmap
|
232 |
+
except Exception as e:
|
233 |
+
logger.error(f"Heatmap generation error: {e}")
|
234 |
+
return None
|
235 |
+
|
236 |
+
class EnhancedRAGSystem(RAGSystem):
|
237 |
+
"""Enhanced RAG system with additional features"""
|
238 |
+
def __init__(self):
|
239 |
+
super().__init__()
|
240 |
+
self.config = config["rag_settings"]
|
241 |
+
self.query_history = []
|
242 |
+
|
243 |
+
def get_relevant_context(self, query: str, k: int = None) -> str:
|
244 |
+
"""Enhanced context retrieval with debugging info"""
|
245 |
+
if k is None:
|
246 |
+
k = self.config["num_relevant_docs"]
|
247 |
+
|
248 |
+
# Log query
|
249 |
+
self.query_history.append({
|
250 |
+
"timestamp": datetime.now().isoformat(),
|
251 |
+
"query": query
|
252 |
+
})
|
253 |
+
|
254 |
# Generate query embedding
|
255 |
query_embedding = self.embedding_model.encode([query])
|
256 |
|
257 |
# Search for similar documents
|
258 |
D, I = self.vector_store.search(np.array(query_embedding).astype('float32'), k)
|
259 |
|
260 |
+
# Filter by similarity threshold
|
261 |
+
relevant_docs = [
|
262 |
+
self.knowledge_base[i]["text"]
|
263 |
+
for i, dist in zip(I[0], D[0])
|
264 |
+
if dist < self.config["similarity_threshold"]
|
265 |
+
]
|
266 |
+
|
267 |
+
return "\n\n".join(relevant_docs)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
268 |
|
269 |
+
def main():
|
270 |
st.set_page_config(
|
271 |
+
page_title="Enhanced Construction Defect Analyzer",
|
272 |
page_icon="🏗️",
|
273 |
layout="wide"
|
274 |
)
|
275 |
|
276 |
+
st.title("🏗️ Advanced Construction Defect Analysis System")
|
277 |
|
278 |
+
# Initialize systems
|
279 |
if 'rag_system' not in st.session_state:
|
280 |
+
st.session_state.rag_system = EnhancedRAGSystem()
|
281 |
+
if 'image_analyzer' not in st.session_state:
|
282 |
+
st.session_state.image_analyzer = ImageAnalyzer()
|
283 |
|
284 |
+
# Sidebar for settings and history
|
285 |
+
with st.sidebar:
|
286 |
+
st.header("Settings & History")
|
287 |
+
show_debug = st.checkbox("Show Debug Information")
|
288 |
+
confidence_threshold = st.slider(
|
289 |
+
"Confidence Threshold",
|
290 |
+
min_value=0.0,
|
291 |
+
max_value=1.0,
|
292 |
+
value=config["analysis_settings"]["confidence_threshold"]
|
293 |
+
)
|
294 |
+
|
295 |
+
if st.button("View Analysis History"):
|
296 |
+
st.write("Recent Analyses:", st.session_state.image_analyzer.history[-5:])
|
297 |
|
298 |
+
# Main interface
|
299 |
+
col1, col2 = st.columns([2, 3])
|
300 |
+
|
301 |
+
with col1:
|
302 |
+
uploaded_file = st.file_uploader(
|
303 |
+
"Upload a construction image",
|
304 |
+
type=['jpg', 'jpeg', 'png']
|
305 |
+
)
|
306 |
+
|
307 |
+
user_query = st.text_input(
|
308 |
+
"Ask a question about construction defects:",
|
309 |
+
help="Enter your question about specific defects or general construction issues"
|
310 |
+
)
|
311 |
|
312 |
+
with col2:
|
313 |
+
if uploaded_file:
|
314 |
+
image = Image.open(uploaded_file)
|
|
|
315 |
|
316 |
+
# Create tabs for different views
|
317 |
+
tabs = st.tabs(["Original", "Analysis", "Details"])
|
|
|
|
|
318 |
|
319 |
+
with tabs[0]:
|
320 |
+
st.image(image, caption="Uploaded Image")
|
321 |
+
|
322 |
+
with tabs[1]:
|
323 |
+
with st.spinner("Analyzing image..."):
|
324 |
+
results = st.session_state.image_analyzer.detect_defects(image)
|
325 |
+
|
326 |
+
if results:
|
327 |
+
# Show defect probabilities
|
328 |
+
defect_probs = results["defect_probabilities"]
|
329 |
+
significant_defects = {
|
330 |
+
k: v for k, v in defect_probs.items()
|
331 |
+
if v > confidence_threshold
|
332 |
+
}
|
333 |
+
|
334 |
+
if significant_defects:
|
335 |
+
st.subheader("Detected Defects")
|
336 |
+
fig = plt.figure(figsize=(10, 6))
|
337 |
+
plt.barh(list(significant_defects.keys()),
|
338 |
+
list(significant_defects.values()))
|
339 |
+
st.pyplot(fig)
|
340 |
+
|
341 |
+
# Show heatmap
|
342 |
+
if results["heatmap"] is not None:
|
343 |
+
st.image(results["heatmap"], caption="Defect Attention Map")
|
344 |
+
|
345 |
+
with tabs[2]:
|
346 |
+
if results:
|
347 |
+
st.json(results["additional_analysis"])
|
348 |
+
if show_debug:
|
349 |
+
st.json(results["image_statistics"])
|
350 |
+
|
351 |
+
if user_query:
|
352 |
+
with st.spinner("Processing query..."):
|
353 |
context = st.session_state.rag_system.get_relevant_context(user_query)
|
354 |
+
response = get_groq_response(user_query, context)
|
355 |
+
|
356 |
+
st.subheader("AI Assistant Response")
|
357 |
+
st.write(response)
|
358 |
|
359 |
+
if show_debug:
|
360 |
+
st.subheader("Retrieved Context")
|
361 |
+
st.text(context)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
362 |
|
363 |
if __name__ == "__main__":
|
364 |
main()
|