Update app.py
Browse files
app.py
CHANGED
@@ -11,6 +11,7 @@ from typing import List, Dict
|
|
11 |
from datetime import datetime
|
12 |
from groq import Groq
|
13 |
import os
|
|
|
14 |
|
15 |
# Setup logging
|
16 |
logging.basicConfig(level=logging.INFO)
|
@@ -18,13 +19,34 @@ logger = logging.getLogger(__name__)
|
|
18 |
|
19 |
class RAGSystem:
|
20 |
def __init__(self):
|
21 |
-
|
22 |
-
self.
|
23 |
-
self.
|
24 |
-
self.
|
25 |
|
26 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
"""Load and preprocess knowledge base"""
|
|
|
28 |
kb = {
|
29 |
"spalling": [
|
30 |
{
|
@@ -77,18 +99,13 @@ class RAGSystem:
|
|
77 |
index.add(np.array(embeddings).astype('float32'))
|
78 |
return index
|
79 |
|
|
|
80 |
def get_relevant_context(self, query: str, k: int = 2) -> str:
|
81 |
"""Retrieve relevant context based on query"""
|
82 |
try:
|
83 |
query_embedding = self.embedding_model.encode([query])
|
84 |
D, I = self.vector_store.search(np.array(query_embedding).astype('float32'), k)
|
85 |
context = "\n\n".join([self.knowledge_base[i]["text"] for i in I[0]])
|
86 |
-
|
87 |
-
self.query_history.append({
|
88 |
-
"timestamp": datetime.now().isoformat(),
|
89 |
-
"query": query
|
90 |
-
})
|
91 |
-
|
92 |
return context
|
93 |
except Exception as e:
|
94 |
logger.error(f"Error retrieving context: {e}")
|
@@ -96,62 +113,73 @@ class RAGSystem:
|
|
96 |
|
97 |
class ImageAnalyzer:
|
98 |
def __init__(self):
|
99 |
-
self.device = "
|
100 |
self.defect_classes = ["spalling", "structural_cracks", "surface_deterioration"]
|
101 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
102 |
try:
|
103 |
-
|
104 |
-
self.feature_extractor = ViTFeatureExtractor.from_pretrained("google/vit-base-patch16-224")
|
105 |
-
self.model = ViTForImageClassification.from_pretrained(
|
106 |
"google/vit-base-patch16-224",
|
107 |
num_labels=len(self.defect_classes),
|
108 |
ignore_mismatched_sizes=True
|
109 |
).to(self.device)
|
110 |
|
111 |
-
# Initialize the model weights for our specific classes
|
112 |
with torch.no_grad():
|
113 |
-
|
114 |
-
in_features=
|
115 |
out_features=len(self.defect_classes)
|
116 |
)
|
117 |
-
|
118 |
except Exception as e:
|
119 |
logger.error(f"Model initialization error: {e}")
|
120 |
-
|
121 |
-
self.feature_extractor = None
|
122 |
|
123 |
-
|
|
|
124 |
"""Preprocess image for model input"""
|
125 |
-
|
126 |
-
image =
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
|
|
|
|
|
|
133 |
|
134 |
def analyze_image(self, image):
|
135 |
"""Analyze image for defects"""
|
136 |
try:
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
# Extract features
|
141 |
inputs = self.feature_extractor(
|
142 |
-
images=
|
143 |
return_tensors="pt"
|
144 |
)
|
145 |
inputs = {k: v.to(self.device) for k, v in inputs.items()}
|
146 |
|
147 |
-
# Get predictions
|
148 |
with torch.no_grad():
|
149 |
outputs = self.model(**inputs)
|
150 |
|
151 |
-
# Get probabilities
|
152 |
probs = torch.nn.functional.softmax(outputs.logits, dim=1)[0]
|
153 |
|
154 |
-
# Add confidence threshold
|
155 |
confidence_threshold = 0.3
|
156 |
results = {
|
157 |
self.defect_classes[i]: float(probs[i])
|
@@ -159,7 +187,6 @@ class ImageAnalyzer:
|
|
159 |
if float(probs[i]) > confidence_threshold
|
160 |
}
|
161 |
|
162 |
-
# If no defects meet threshold, return the highest probability one
|
163 |
if not results:
|
164 |
max_idx = torch.argmax(probs)
|
165 |
results = {self.defect_classes[int(max_idx)]: float(probs[max_idx])}
|
@@ -170,9 +197,13 @@ class ImageAnalyzer:
|
|
170 |
logger.error(f"Analysis error: {str(e)}")
|
171 |
return None
|
172 |
|
|
|
173 |
def get_groq_response(query: str, context: str) -> str:
|
174 |
-
"""Get response from Groq LLM"""
|
175 |
try:
|
|
|
|
|
|
|
176 |
client = Groq(api_key=os.getenv("GROQ_API_KEY"))
|
177 |
|
178 |
prompt = f"""Based on the following context about construction defects, answer the question.
|
@@ -197,7 +228,7 @@ def get_groq_response(query: str, context: str) -> str:
|
|
197 |
return response.choices[0].message.content
|
198 |
except Exception as e:
|
199 |
logger.error(f"Groq API error: {e}")
|
200 |
-
return f"Error: Unable to get response from AI model. Please
|
201 |
|
202 |
def main():
|
203 |
st.set_page_config(
|
@@ -208,56 +239,61 @@ def main():
|
|
208 |
|
209 |
st.title("🏗️ Construction Defect Analyzer")
|
210 |
|
211 |
-
# Initialize systems
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
-
|
216 |
-
st.session_state.rag_system = RAGSystem()
|
217 |
-
except Exception as e:
|
218 |
-
st.error(f"Error initializing systems: {str(e)}")
|
219 |
-
return
|
220 |
|
221 |
-
# Create two columns
|
222 |
col1, col2 = st.columns([1, 1])
|
223 |
|
224 |
with col1:
|
225 |
st.subheader("Image Analysis")
|
226 |
-
uploaded_file = st.file_uploader(
|
|
|
|
|
|
|
|
|
227 |
|
228 |
if uploaded_file is not None:
|
229 |
try:
|
230 |
-
#
|
231 |
-
|
232 |
-
st.image(image, caption='Uploaded Image', use_column_width=True)
|
233 |
|
234 |
-
#
|
235 |
-
with st.spinner('
|
236 |
-
|
237 |
-
|
238 |
-
|
239 |
-
st.success('Analysis complete!')
|
240 |
|
241 |
-
#
|
242 |
-
st.
|
|
|
|
|
|
|
243 |
|
244 |
-
|
245 |
-
|
246 |
-
|
247 |
-
|
248 |
-
|
249 |
-
|
250 |
-
|
251 |
-
|
252 |
-
|
253 |
-
|
254 |
-
|
255 |
-
|
|
|
|
|
|
|
|
|
|
|
256 |
else:
|
257 |
-
st.error("
|
258 |
-
|
259 |
except Exception as e:
|
260 |
-
st.error(f"Error: {str(e)}")
|
261 |
logger.error(f"Process error: {e}")
|
262 |
|
263 |
with col2:
|
@@ -272,18 +308,21 @@ def main():
|
|
272 |
# Get context from RAG system
|
273 |
context = st.session_state.rag_system.get_relevant_context(user_query)
|
274 |
|
275 |
-
|
276 |
-
|
277 |
-
|
278 |
-
|
279 |
-
|
280 |
-
|
281 |
-
|
282 |
-
|
283 |
-
|
284 |
-
|
|
|
|
|
|
|
|
|
285 |
|
286 |
-
# Sidebar for information and settings
|
287 |
with st.sidebar:
|
288 |
st.header("About")
|
289 |
st.write("""
|
@@ -304,9 +343,9 @@ def main():
|
|
304 |
|
305 |
# Add settings section
|
306 |
st.subheader("Settings")
|
307 |
-
if st.button("Clear
|
308 |
-
st.
|
309 |
-
st.success("
|
310 |
|
311 |
if __name__ == "__main__":
|
312 |
main()
|
|
|
11 |
from datetime import datetime
|
12 |
from groq import Groq
|
13 |
import os
|
14 |
+
from functools import lru_cache
|
15 |
|
16 |
# Setup logging
|
17 |
logging.basicConfig(level=logging.INFO)
|
|
|
19 |
|
20 |
class RAGSystem:
|
21 |
def __init__(self):
|
22 |
+
# Load models only when needed
|
23 |
+
self._embedding_model = None
|
24 |
+
self._vector_store = None
|
25 |
+
self._knowledge_base = None
|
26 |
|
27 |
+
@property
|
28 |
+
def embedding_model(self):
|
29 |
+
if self._embedding_model is None:
|
30 |
+
self._embedding_model = SentenceTransformer('all-MiniLM-L6-v2')
|
31 |
+
return self._embedding_model
|
32 |
+
|
33 |
+
@property
|
34 |
+
def knowledge_base(self):
|
35 |
+
if self._knowledge_base is None:
|
36 |
+
self._knowledge_base = self.load_knowledge_base()
|
37 |
+
return self._knowledge_base
|
38 |
+
|
39 |
+
@property
|
40 |
+
def vector_store(self):
|
41 |
+
if self._vector_store is None:
|
42 |
+
self._vector_store = self.create_vector_store()
|
43 |
+
return self._vector_store
|
44 |
+
|
45 |
+
@staticmethod
|
46 |
+
@lru_cache(maxsize=1) # Cache the knowledge base
|
47 |
+
def load_knowledge_base() -> List[Dict]:
|
48 |
"""Load and preprocess knowledge base"""
|
49 |
+
# Your existing knowledge base code...
|
50 |
kb = {
|
51 |
"spalling": [
|
52 |
{
|
|
|
99 |
index.add(np.array(embeddings).astype('float32'))
|
100 |
return index
|
101 |
|
102 |
+
@lru_cache(maxsize=32) # Cache recent query results
|
103 |
def get_relevant_context(self, query: str, k: int = 2) -> str:
|
104 |
"""Retrieve relevant context based on query"""
|
105 |
try:
|
106 |
query_embedding = self.embedding_model.encode([query])
|
107 |
D, I = self.vector_store.search(np.array(query_embedding).astype('float32'), k)
|
108 |
context = "\n\n".join([self.knowledge_base[i]["text"] for i in I[0]])
|
|
|
|
|
|
|
|
|
|
|
|
|
109 |
return context
|
110 |
except Exception as e:
|
111 |
logger.error(f"Error retrieving context: {e}")
|
|
|
113 |
|
114 |
class ImageAnalyzer:
|
115 |
def __init__(self):
|
116 |
+
self.device = "cpu" # Force CPU usage for better compatibility
|
117 |
self.defect_classes = ["spalling", "structural_cracks", "surface_deterioration"]
|
118 |
+
self._model = None
|
119 |
+
self._feature_extractor = None
|
120 |
+
|
121 |
+
@property
|
122 |
+
def model(self):
|
123 |
+
if self._model is None:
|
124 |
+
self._model = self._load_model()
|
125 |
+
return self._model
|
126 |
+
|
127 |
+
@property
|
128 |
+
def feature_extractor(self):
|
129 |
+
if self._feature_extractor is None:
|
130 |
+
self._feature_extractor = ViTFeatureExtractor.from_pretrained("google/vit-base-patch16-224")
|
131 |
+
return self._feature_extractor
|
132 |
+
|
133 |
+
def _load_model(self):
|
134 |
try:
|
135 |
+
model = ViTForImageClassification.from_pretrained(
|
|
|
|
|
136 |
"google/vit-base-patch16-224",
|
137 |
num_labels=len(self.defect_classes),
|
138 |
ignore_mismatched_sizes=True
|
139 |
).to(self.device)
|
140 |
|
|
|
141 |
with torch.no_grad():
|
142 |
+
model.classifier = torch.nn.Linear(
|
143 |
+
in_features=model.classifier.in_features,
|
144 |
out_features=len(self.defect_classes)
|
145 |
)
|
146 |
+
return model
|
147 |
except Exception as e:
|
148 |
logger.error(f"Model initialization error: {e}")
|
149 |
+
return None
|
|
|
150 |
|
151 |
+
@st.cache_data # Cache preprocessed images
|
152 |
+
def preprocess_image(self, image_bytes):
|
153 |
"""Preprocess image for model input"""
|
154 |
+
try:
|
155 |
+
image = Image.open(image_bytes)
|
156 |
+
if image.mode != 'RGB':
|
157 |
+
image = image.convert('RGB')
|
158 |
+
|
159 |
+
width, height = 224, 224
|
160 |
+
image = image.resize((width, height), Image.Resampling.LANCZOS)
|
161 |
+
return image
|
162 |
+
except Exception as e:
|
163 |
+
logger.error(f"Image preprocessing error: {e}")
|
164 |
+
return None
|
165 |
|
166 |
def analyze_image(self, image):
|
167 |
"""Analyze image for defects"""
|
168 |
try:
|
169 |
+
if self.model is None:
|
170 |
+
raise ValueError("Model not properly initialized")
|
171 |
+
|
|
|
172 |
inputs = self.feature_extractor(
|
173 |
+
images=image,
|
174 |
return_tensors="pt"
|
175 |
)
|
176 |
inputs = {k: v.to(self.device) for k, v in inputs.items()}
|
177 |
|
|
|
178 |
with torch.no_grad():
|
179 |
outputs = self.model(**inputs)
|
180 |
|
|
|
181 |
probs = torch.nn.functional.softmax(outputs.logits, dim=1)[0]
|
182 |
|
|
|
183 |
confidence_threshold = 0.3
|
184 |
results = {
|
185 |
self.defect_classes[i]: float(probs[i])
|
|
|
187 |
if float(probs[i]) > confidence_threshold
|
188 |
}
|
189 |
|
|
|
190 |
if not results:
|
191 |
max_idx = torch.argmax(probs)
|
192 |
results = {self.defect_classes[int(max_idx)]: float(probs[max_idx])}
|
|
|
197 |
logger.error(f"Analysis error: {str(e)}")
|
198 |
return None
|
199 |
|
200 |
+
@st.cache_data
|
201 |
def get_groq_response(query: str, context: str) -> str:
|
202 |
+
"""Get response from Groq LLM with caching"""
|
203 |
try:
|
204 |
+
if not os.getenv("GROQ_API_KEY"):
|
205 |
+
return "Error: Groq API key not configured"
|
206 |
+
|
207 |
client = Groq(api_key=os.getenv("GROQ_API_KEY"))
|
208 |
|
209 |
prompt = f"""Based on the following context about construction defects, answer the question.
|
|
|
228 |
return response.choices[0].message.content
|
229 |
except Exception as e:
|
230 |
logger.error(f"Groq API error: {e}")
|
231 |
+
return f"Error: Unable to get response from AI model. Please try again."
|
232 |
|
233 |
def main():
|
234 |
st.set_page_config(
|
|
|
239 |
|
240 |
st.title("🏗️ Construction Defect Analyzer")
|
241 |
|
242 |
+
# Initialize systems in session state if not present
|
243 |
+
if 'analyzer' not in st.session_state:
|
244 |
+
st.session_state.analyzer = ImageAnalyzer()
|
245 |
+
if 'rag_system' not in st.session_state:
|
246 |
+
st.session_state.rag_system = RAGSystem()
|
|
|
|
|
|
|
|
|
247 |
|
|
|
248 |
col1, col2 = st.columns([1, 1])
|
249 |
|
250 |
with col1:
|
251 |
st.subheader("Image Analysis")
|
252 |
+
uploaded_file = st.file_uploader(
|
253 |
+
"Upload a construction image for analysis",
|
254 |
+
type=["jpg", "jpeg", "png"],
|
255 |
+
key="image_uploader" # Add key for proper state management
|
256 |
+
)
|
257 |
|
258 |
if uploaded_file is not None:
|
259 |
try:
|
260 |
+
# Create a placeholder for the image
|
261 |
+
image_placeholder = st.empty()
|
|
|
262 |
|
263 |
+
# Process image with progress indicator
|
264 |
+
with st.spinner('Processing image...'):
|
265 |
+
processed_image = st.session_state.analyzer.preprocess_image(uploaded_file)
|
266 |
+
if processed_image:
|
267 |
+
image_placeholder.image(processed_image, caption='Uploaded Image', use_column_width=True)
|
|
|
268 |
|
269 |
+
# Analyze image with progress bar
|
270 |
+
progress_bar = st.progress(0)
|
271 |
+
with st.spinner('Analyzing defects...'):
|
272 |
+
results = st.session_state.analyzer.analyze_image(processed_image)
|
273 |
+
progress_bar.progress(100)
|
274 |
|
275 |
+
if results:
|
276 |
+
st.success('Analysis complete!')
|
277 |
+
|
278 |
+
# Display results
|
279 |
+
st.subheader("Detected Defects")
|
280 |
+
fig, ax = plt.subplots(figsize=(8, 4))
|
281 |
+
defects = list(results.keys())
|
282 |
+
probs = list(results.values())
|
283 |
+
ax.barh(defects, probs)
|
284 |
+
ax.set_xlim(0, 1)
|
285 |
+
plt.tight_layout()
|
286 |
+
st.pyplot(fig)
|
287 |
+
|
288 |
+
most_likely_defect = max(results.items(), key=lambda x: x[1])[0]
|
289 |
+
st.info(f"Most likely defect: {most_likely_defect}")
|
290 |
+
else:
|
291 |
+
st.warning("No defects detected or analysis failed. Please try another image.")
|
292 |
else:
|
293 |
+
st.error("Failed to process image. Please try another one.")
|
294 |
+
|
295 |
except Exception as e:
|
296 |
+
st.error(f"Error processing image: {str(e)}")
|
297 |
logger.error(f"Process error: {e}")
|
298 |
|
299 |
with col2:
|
|
|
308 |
# Get context from RAG system
|
309 |
context = st.session_state.rag_system.get_relevant_context(user_query)
|
310 |
|
311 |
+
if context:
|
312 |
+
# Get response from Groq
|
313 |
+
response = get_groq_response(user_query, context)
|
314 |
+
|
315 |
+
if not response.startswith("Error"):
|
316 |
+
st.write("Answer:")
|
317 |
+
st.markdown(response)
|
318 |
+
else:
|
319 |
+
st.error(response)
|
320 |
+
|
321 |
+
with st.expander("View retrieved information"):
|
322 |
+
st.text(context)
|
323 |
+
else:
|
324 |
+
st.error("Could not find relevant information. Please try rephrasing your question.")
|
325 |
|
|
|
326 |
with st.sidebar:
|
327 |
st.header("About")
|
328 |
st.write("""
|
|
|
343 |
|
344 |
# Add settings section
|
345 |
st.subheader("Settings")
|
346 |
+
if st.button("Clear Cache"):
|
347 |
+
st.cache_data.clear()
|
348 |
+
st.success("Cache cleared!")
|
349 |
|
350 |
if __name__ == "__main__":
|
351 |
main()
|