Update app.py
Browse files
app.py
CHANGED
@@ -6,308 +6,185 @@ from sentence_transformers import SentenceTransformer
|
|
6 |
from PIL import Image
|
7 |
import torch
|
8 |
import numpy as np
|
9 |
-
from typing import List, Dict, Tuple
|
10 |
import faiss
|
11 |
import json
|
12 |
-
import torchvision.transforms.functional as TF
|
13 |
-
from torchvision import transforms
|
14 |
import cv2
|
15 |
-
import pandas as pd
|
16 |
-
from datetime import datetime
|
17 |
import logging
|
|
|
|
|
18 |
|
19 |
# Setup logging
|
20 |
logging.basicConfig(level=logging.INFO)
|
21 |
logger = logging.getLogger(__name__)
|
22 |
|
23 |
-
class
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
"groq_model": "llama-3.3-70b-versatile"
|
30 |
-
},
|
31 |
-
"analysis_settings": {
|
32 |
-
"confidence_threshold": 0.5,
|
33 |
-
"max_defects": 3,
|
34 |
-
"heatmap_intensity": 0.7
|
35 |
-
},
|
36 |
-
"rag_settings": {
|
37 |
-
"num_relevant_docs": 3,
|
38 |
-
"similarity_threshold": 0.75
|
39 |
-
}
|
40 |
-
}
|
41 |
|
42 |
-
|
43 |
-
|
44 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
45 |
try:
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
50 |
except Exception as e:
|
51 |
-
logger.
|
52 |
-
|
53 |
-
|
54 |
-
config = ConfigManager.load_config()
|
55 |
|
56 |
class ImageAnalyzer:
|
57 |
def __init__(self):
|
58 |
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
59 |
-
self.
|
60 |
-
self.
|
61 |
-
self.
|
62 |
-
"spalling", "reinforcement_corrosion", "structural_cracks",
|
63 |
-
"water_damage", "surface_deterioration", "alkali_silica_reaction",
|
64 |
-
"concrete_delamination", "honeycomb", "scaling",
|
65 |
-
"efflorescence", "joint_deterioration", "carbonation"
|
66 |
-
]
|
67 |
-
self.initialize_models()
|
68 |
self.history = []
|
69 |
|
70 |
-
def
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
ignore_mismatched_sizes=True
|
78 |
-
).to(self.device)
|
79 |
-
|
80 |
-
# Initialize image processor
|
81 |
-
self.processor = ViTImageProcessor.from_pretrained(self.config["vit_model"])
|
82 |
-
|
83 |
-
# Initialize transformations pipeline
|
84 |
-
self.transforms = self._setup_transforms()
|
85 |
-
|
86 |
-
return True
|
87 |
-
except Exception as e:
|
88 |
-
logger.error(f"Model initialization error: {e}")
|
89 |
-
return False
|
90 |
-
|
91 |
-
def _setup_transforms(self):
|
92 |
-
"""Setup image transformation pipeline"""
|
93 |
-
return transforms.Compose([
|
94 |
-
transforms.Resize((224, 224)),
|
95 |
-
transforms.ToTensor(),
|
96 |
-
transforms.Normalize(mean=[0.485, 0.456, 0.406],
|
97 |
-
std=[0.229, 0.224, 0.225]),
|
98 |
-
transforms.RandomAdjustSharpness(2),
|
99 |
-
transforms.ColorJitter(brightness=0.2, contrast=0.2)
|
100 |
-
])
|
101 |
|
102 |
-
def
|
103 |
-
"""
|
104 |
try:
|
105 |
-
#
|
106 |
-
|
107 |
-
image = image.convert('RGB')
|
108 |
-
# Basic image statistics
|
109 |
-
img_array = np.array(image)
|
110 |
-
stats = {
|
111 |
-
"mean_brightness": np.mean(img_array),
|
112 |
-
"std_brightness": np.std(img_array),
|
113 |
-
"size": image.size,
|
114 |
-
"aspect_ratio": image.size[0] / image.size[1]
|
115 |
-
}
|
116 |
-
# Edge detection for crack analysis
|
117 |
-
gray = cv2.cvtColor(img_array, cv2.COLOR_RGB2GRAY)
|
118 |
-
edges = cv2.Canny(gray, 100, 200)
|
119 |
-
stats["edge_density"] = np.mean(edges > 0)
|
120 |
-
# Color analysis for rust detection
|
121 |
-
hsv = cv2.cvtColor(img_array, cv2.COLOR_RGB2HSV)
|
122 |
-
rust_mask = cv2.inRange(hsv, np.array([0, 50, 50]), np.array([30, 255, 255]))
|
123 |
-
stats["rust_percentage"] = np.mean(rust_mask > 0)
|
124 |
-
# Transform for model
|
125 |
-
model_input = self.transforms(image).unsqueeze(0).to(self.device)
|
126 |
-
return {
|
127 |
-
"model_input": model_input,
|
128 |
-
"stats": stats,
|
129 |
-
"edges": edges,
|
130 |
-
"rust_mask": rust_mask
|
131 |
-
}
|
132 |
-
except Exception as e:
|
133 |
-
logger.error(f"Preprocessing error: {e}")
|
134 |
-
return None
|
135 |
-
def detect_defects(self, image: Image.Image) -> Dict[str, Any]:
|
136 |
-
"""Enhanced defect detection with multiple analysis methods"""
|
137 |
-
try:
|
138 |
-
# Preprocess image
|
139 |
-
proc_data = self.preprocess_image(image)
|
140 |
-
if proc_data is None:
|
141 |
-
logger.error("Image preprocessing failed.")
|
142 |
-
return None # Early return if preprocessing failed
|
143 |
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
# Get probabilities
|
149 |
-
probabilities = torch.nn.functional.softmax(outputs.logits, dim=1)
|
150 |
-
|
151 |
-
# Convert to dictionary
|
152 |
-
defect_probs = {
|
153 |
-
self.defect_classes[i]: float(probabilities[0][i])
|
154 |
-
for i in range(len(self.defect_classes))
|
155 |
-
}
|
156 |
-
# Generate attention heatmap
|
157 |
-
attention_weights = outputs.attentions[-1].mean(dim=1)[0] if hasattr(outputs, 'attentions') else None
|
158 |
-
heatmap = self.generate_heatmap(attention_weights, image.size) if attention_weights is not None else None
|
159 |
|
160 |
-
|
161 |
-
|
|
|
|
|
|
|
|
|
162 |
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
"edge_detection": proc_data["edges"],
|
170 |
-
"rust_detection": proc_data["rust_mask"],
|
171 |
-
"timestamp": datetime.now().isoformat()
|
172 |
-
}
|
173 |
-
# Save to history
|
174 |
-
self.history.append(result)
|
175 |
-
return result
|
176 |
-
except Exception as e:
|
177 |
-
logger.error(f"Defect detection error: {e}")
|
178 |
-
return None
|
179 |
-
|
180 |
-
def analyze_image_statistics(self, stats: Dict) -> Dict[str, Any]:
|
181 |
-
"""Analyze image statistics for additional insights"""
|
182 |
-
analysis = {}
|
183 |
-
|
184 |
-
# Brightness analysis
|
185 |
-
if stats["mean_brightness"] < 50:
|
186 |
-
analysis["lighting_condition"] = "Poor lighting - may affect accuracy"
|
187 |
-
elif stats["mean_brightness"] > 200:
|
188 |
-
analysis["lighting_condition"] = "Overexposed - may affect accuracy"
|
189 |
-
|
190 |
-
# Edge density analysis
|
191 |
-
if stats["edge_density"] > 0.1:
|
192 |
-
analysis["crack_likelihood"] = "High crack probability based on edge detection"
|
193 |
-
|
194 |
-
# Rust analysis
|
195 |
-
if stats["rust_percentage"] > 0.05:
|
196 |
-
analysis["corrosion_indicator"] = "Possible corrosion detected"
|
197 |
-
|
198 |
-
return analysis
|
199 |
-
|
200 |
-
def generate_heatmap(self, attention_weights: torch.Tensor, image_size: Tuple[int, int]) -> np.ndarray:
|
201 |
-
"""Generate enhanced attention heatmap"""
|
202 |
-
try:
|
203 |
-
if attention_weights is None:
|
204 |
-
return None
|
205 |
-
|
206 |
-
# Process attention weights
|
207 |
-
heatmap = attention_weights.cpu().numpy()
|
208 |
-
heatmap = cv2.resize(heatmap, image_size)
|
209 |
-
|
210 |
-
# Enhanced normalization
|
211 |
-
heatmap = np.maximum(heatmap, 0)
|
212 |
-
heatmap = (heatmap - heatmap.min()) / (heatmap.max() - heatmap.min() + 1e-8)
|
213 |
|
214 |
-
|
215 |
-
|
216 |
-
|
|
|
|
|
217 |
|
218 |
-
|
219 |
-
|
220 |
-
heatmap = cv2.applyColorMap(heatmap, cv2.COLORMAP_JET)
|
221 |
|
222 |
-
return heatmap
|
223 |
except Exception as e:
|
224 |
-
logger.error(f"
|
225 |
return None
|
226 |
-
class RAGSystem:
|
227 |
-
"""Basic RAG System for storing and retrieving documents."""
|
228 |
-
def __init__(self):
|
229 |
-
self.embedding_model = SentenceTransformer(config["model_settings"]["sentence_transformer"])
|
230 |
-
self.vector_store = faiss.IndexFlatL2(384) # 384-dim for MiniLM embeddings
|
231 |
-
self.knowledge_base = []
|
232 |
|
233 |
-
|
234 |
-
|
235 |
-
|
236 |
-
|
237 |
-
for doc in docs:
|
238 |
-
self.knowledge_base.append({"text": doc})
|
239 |
-
|
240 |
-
def search(self, query: str, k: int = 3):
|
241 |
-
"""Retrieve similar documents for the query."""
|
242 |
-
query_embedding = self.embedding_model.encode([query])
|
243 |
-
D, I = self.vector_store.search(np.array(query_embedding).astype('float32'), k)
|
244 |
-
return [self.knowledge_base[i]["text"] for i in I[0]]
|
245 |
-
|
246 |
-
|
247 |
-
class EnhancedRAGSystem(RAGSystem):
|
248 |
-
"""Enhanced RAG system with additional features"""
|
249 |
-
def __init__(self):
|
250 |
-
super().__init__()
|
251 |
-
self.config = config["rag_settings"]
|
252 |
-
self.query_history = []
|
253 |
-
|
254 |
-
def get_relevant_context(self, query: str, k: int = None) -> str:
|
255 |
-
"""Enhanced context retrieval with debugging info"""
|
256 |
-
if k is None:
|
257 |
-
k = self.config["num_relevant_docs"]
|
258 |
-
|
259 |
-
# Log query
|
260 |
-
self.query_history.append({
|
261 |
-
"timestamp": datetime.now().isoformat(),
|
262 |
-
"query": query
|
263 |
-
})
|
264 |
-
|
265 |
-
# Generate query embedding
|
266 |
-
query_embedding = self.embedding_model.encode([query])
|
267 |
-
|
268 |
-
# Search for similar documents
|
269 |
-
D, I = self.vector_store.search(np.array(query_embedding).astype('float32'), k)
|
270 |
|
271 |
-
|
272 |
-
|
273 |
-
|
274 |
-
|
275 |
-
|
276 |
-
|
277 |
-
|
278 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
279 |
|
280 |
def main():
|
281 |
st.set_page_config(
|
282 |
-
page_title="
|
283 |
page_icon="🏗️",
|
284 |
layout="wide"
|
285 |
)
|
286 |
|
287 |
-
st.title("🏗️
|
288 |
|
289 |
-
# Initialize systems
|
290 |
if 'rag_system' not in st.session_state:
|
291 |
-
st.session_state.rag_system =
|
292 |
if 'image_analyzer' not in st.session_state:
|
293 |
st.session_state.image_analyzer = ImageAnalyzer()
|
294 |
|
295 |
-
#
|
296 |
-
|
297 |
-
st.header("Settings & History")
|
298 |
-
show_debug = st.checkbox("Show Debug Information")
|
299 |
-
confidence_threshold = st.slider(
|
300 |
-
"Confidence Threshold",
|
301 |
-
min_value=0.0,
|
302 |
-
max_value=1.0,
|
303 |
-
value=config["analysis_settings"]["confidence_threshold"]
|
304 |
-
)
|
305 |
-
|
306 |
-
if st.button("View Analysis History"):
|
307 |
-
st.write("Recent Analyses:", st.session_state.image_analyzer.history[-5:])
|
308 |
-
|
309 |
-
# Main interface
|
310 |
-
col1, col2 = st.columns([2, 3])
|
311 |
|
312 |
with col1:
|
313 |
uploaded_file = st.file_uploader(
|
@@ -315,61 +192,59 @@ def main():
|
|
315 |
type=['jpg', 'jpeg', 'png']
|
316 |
)
|
317 |
|
318 |
-
user_query = st.text_input(
|
319 |
-
"Ask a question about construction defects:",
|
320 |
-
help="Enter your question about specific defects or general construction issues"
|
321 |
-
)
|
322 |
-
|
323 |
-
with col2:
|
324 |
if uploaded_file:
|
325 |
image = Image.open(uploaded_file)
|
|
|
326 |
|
327 |
-
|
328 |
-
|
329 |
-
|
330 |
-
with tabs[0]:
|
331 |
-
st.image(image, caption="Uploaded Image")
|
332 |
-
|
333 |
-
with tabs[1]:
|
334 |
-
with st.spinner("Analyzing image..."):
|
335 |
-
results = st.session_state.image_analyzer.detect_defects(image)
|
336 |
-
|
337 |
-
if results:
|
338 |
-
# Show defect probabilities
|
339 |
-
defect_probs = results["defect_probabilities"]
|
340 |
-
significant_defects = {
|
341 |
-
k: v for k, v in defect_probs.items()
|
342 |
-
if v > confidence_threshold
|
343 |
-
}
|
344 |
-
|
345 |
-
if significant_defects:
|
346 |
-
st.subheader("Detected Defects")
|
347 |
-
fig = plt.figure(figsize=(10, 6))
|
348 |
-
plt.barh(list(significant_defects.keys()),
|
349 |
-
list(significant_defects.values()))
|
350 |
-
st.pyplot(fig)
|
351 |
-
|
352 |
-
# Show heatmap
|
353 |
-
if results["heatmap"] is not None:
|
354 |
-
st.image(results["heatmap"], caption="Defect Attention Map")
|
355 |
-
|
356 |
-
with tabs[2]:
|
357 |
if results:
|
358 |
-
st.
|
359 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
360 |
st.json(results["image_statistics"])
|
361 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
362 |
if user_query:
|
363 |
with st.spinner("Processing query..."):
|
364 |
context = st.session_state.rag_system.get_relevant_context(user_query)
|
365 |
response = get_groq_response(user_query, context)
|
366 |
|
367 |
-
st.
|
368 |
st.write(response)
|
369 |
|
370 |
-
if
|
371 |
-
st.
|
372 |
st.text(context)
|
373 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
374 |
if __name__ == "__main__":
|
375 |
main()
|
|
|
6 |
from PIL import Image
|
7 |
import torch
|
8 |
import numpy as np
|
9 |
+
from typing import List, Dict, Tuple
|
10 |
import faiss
|
11 |
import json
|
|
|
|
|
12 |
import cv2
|
|
|
|
|
13 |
import logging
|
14 |
+
from datetime import datetime
|
15 |
+
import matplotlib.pyplot as plt
|
16 |
|
17 |
# Setup logging
|
18 |
logging.basicConfig(level=logging.INFO)
|
19 |
logger = logging.getLogger(__name__)
|
20 |
|
21 |
+
class RAGSystem:
|
22 |
+
def __init__(self):
|
23 |
+
self.embedding_model = SentenceTransformer('all-MiniLM-L6-v2')
|
24 |
+
self.knowledge_base = self.load_knowledge_base()
|
25 |
+
self.vector_store = self.create_vector_store()
|
26 |
+
self.query_history = []
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
|
28 |
+
def load_knowledge_base(self) -> List[Dict]:
|
29 |
+
"""Load and preprocess knowledge base"""
|
30 |
+
# Using a simplified version of your knowledge base
|
31 |
+
kb = {
|
32 |
+
"spalling": [
|
33 |
+
{
|
34 |
+
"severity": "Critical",
|
35 |
+
"description": "Severe concrete spalling with exposed reinforcement",
|
36 |
+
"repair_method": "Remove deteriorated concrete, clean reinforcement",
|
37 |
+
"estimated_cost": "Very High ($15,000+)",
|
38 |
+
"immediate_action": "Evacuate area, install support"
|
39 |
+
}
|
40 |
+
],
|
41 |
+
"structural_cracks": [
|
42 |
+
{
|
43 |
+
"severity": "High",
|
44 |
+
"description": "Active structural cracks >5mm width",
|
45 |
+
"repair_method": "Structural analysis, epoxy injection",
|
46 |
+
"estimated_cost": "High ($10,000-$20,000)",
|
47 |
+
"immediate_action": "Install crack monitors"
|
48 |
+
}
|
49 |
+
]
|
50 |
+
}
|
51 |
+
|
52 |
+
documents = []
|
53 |
+
for category, items in kb.items():
|
54 |
+
for item in items:
|
55 |
+
doc_text = f"Category: {category}\n"
|
56 |
+
for key, value in item.items():
|
57 |
+
doc_text += f"{key}: {value}\n"
|
58 |
+
documents.append({"text": doc_text, "metadata": {"category": category}})
|
59 |
+
|
60 |
+
return documents
|
61 |
+
|
62 |
+
def create_vector_store(self):
|
63 |
+
"""Create FAISS vector store"""
|
64 |
+
texts = [doc["text"] for doc in self.knowledge_base]
|
65 |
+
embeddings = self.embedding_model.encode(texts)
|
66 |
+
dimension = embeddings.shape[1]
|
67 |
+
index = faiss.IndexFlatL2(dimension)
|
68 |
+
index.add(np.array(embeddings).astype('float32'))
|
69 |
+
return index
|
70 |
+
|
71 |
+
def get_relevant_context(self, query: str, k: int = 3) -> str:
|
72 |
+
"""Retrieve relevant context based on query"""
|
73 |
try:
|
74 |
+
query_embedding = self.embedding_model.encode([query])
|
75 |
+
D, I = self.vector_store.search(np.array(query_embedding).astype('float32'), k)
|
76 |
+
context = "\n\n".join([self.knowledge_base[i]["text"] for i in I[0]])
|
77 |
+
|
78 |
+
# Log query
|
79 |
+
self.query_history.append({
|
80 |
+
"timestamp": datetime.now().isoformat(),
|
81 |
+
"query": query
|
82 |
+
})
|
83 |
+
|
84 |
+
return context
|
85 |
except Exception as e:
|
86 |
+
logger.error(f"Error retrieving context: {e}")
|
87 |
+
return ""
|
|
|
|
|
88 |
|
89 |
class ImageAnalyzer:
|
90 |
def __init__(self):
|
91 |
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
92 |
+
self.defect_classes = ["spalling", "structural_cracks", "surface_deterioration"]
|
93 |
+
self.model = self._initialize_model()
|
94 |
+
self.processor = ViTImageProcessor.from_pretrained("google/vit-base-patch16-224")
|
|
|
|
|
|
|
|
|
|
|
|
|
95 |
self.history = []
|
96 |
|
97 |
+
def _initialize_model(self):
|
98 |
+
model = ViTForImageClassification.from_pretrained(
|
99 |
+
"google/vit-base-patch16-224",
|
100 |
+
num_labels=len(self.defect_classes),
|
101 |
+
ignore_mismatched_sizes=True
|
102 |
+
)
|
103 |
+
return model.to(self.device)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
104 |
|
105 |
+
def analyze_image(self, image: Image.Image) -> Dict:
|
106 |
+
"""Analyze image for defects"""
|
107 |
try:
|
108 |
+
# Preprocess image
|
109 |
+
inputs = self.processor(images=image, return_tensors="pt").to(self.device)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
110 |
|
111 |
+
# Get model predictions
|
112 |
+
with torch.no_grad():
|
113 |
+
outputs = self.model(**inputs)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
114 |
|
115 |
+
# Process results
|
116 |
+
probabilities = torch.nn.functional.softmax(outputs.logits, dim=1)
|
117 |
+
defect_probs = {
|
118 |
+
self.defect_classes[i]: float(probabilities[0][i])
|
119 |
+
for i in range(len(self.defect_classes))
|
120 |
+
}
|
121 |
|
122 |
+
# Basic image statistics
|
123 |
+
img_array = np.array(image)
|
124 |
+
stats = {
|
125 |
+
"mean_brightness": float(np.mean(img_array)),
|
126 |
+
"image_size": image.size
|
127 |
+
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
128 |
|
129 |
+
result = {
|
130 |
+
"defect_probabilities": defect_probs,
|
131 |
+
"image_statistics": stats,
|
132 |
+
"timestamp": datetime.now().isoformat()
|
133 |
+
}
|
134 |
|
135 |
+
self.history.append(result)
|
136 |
+
return result
|
|
|
137 |
|
|
|
138 |
except Exception as e:
|
139 |
+
logger.error(f"Image analysis error: {e}")
|
140 |
return None
|
|
|
|
|
|
|
|
|
|
|
|
|
141 |
|
142 |
+
def get_groq_response(query: str, context: str) -> str:
|
143 |
+
"""Get response from Groq LLM"""
|
144 |
+
try:
|
145 |
+
client = Groq(api_key=os.getenv("GROQ_API_KEY"))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
146 |
|
147 |
+
prompt = f"""Based on the following context about construction defects, answer the question.
|
148 |
+
Context: {context}
|
149 |
+
Question: {query}
|
150 |
+
Provide a detailed answer based on the context."""
|
151 |
+
|
152 |
+
response = client.chat.completions.create(
|
153 |
+
messages=[
|
154 |
+
{
|
155 |
+
"role": "system",
|
156 |
+
"content": "You are a construction defect analysis expert."
|
157 |
+
},
|
158 |
+
{
|
159 |
+
"role": "user",
|
160 |
+
"content": prompt
|
161 |
+
}
|
162 |
+
],
|
163 |
+
model="llama2-70b-4096",
|
164 |
+
temperature=0.7,
|
165 |
+
)
|
166 |
+
return response.choices[0].message.content
|
167 |
+
except Exception as e:
|
168 |
+
logger.error(f"Groq API error: {e}")
|
169 |
+
return f"Error: Unable to get response from AI model. Please try again later."
|
170 |
|
171 |
def main():
|
172 |
st.set_page_config(
|
173 |
+
page_title="Construction Defect Analyzer",
|
174 |
page_icon="🏗️",
|
175 |
layout="wide"
|
176 |
)
|
177 |
|
178 |
+
st.title("🏗️ Construction Defect Analyzer")
|
179 |
|
180 |
+
# Initialize systems in session state
|
181 |
if 'rag_system' not in st.session_state:
|
182 |
+
st.session_state.rag_system = RAGSystem()
|
183 |
if 'image_analyzer' not in st.session_state:
|
184 |
st.session_state.image_analyzer = ImageAnalyzer()
|
185 |
|
186 |
+
# Create two columns
|
187 |
+
col1, col2 = st.columns([1, 1])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
188 |
|
189 |
with col1:
|
190 |
uploaded_file = st.file_uploader(
|
|
|
192 |
type=['jpg', 'jpeg', 'png']
|
193 |
)
|
194 |
|
|
|
|
|
|
|
|
|
|
|
|
|
195 |
if uploaded_file:
|
196 |
image = Image.open(uploaded_file)
|
197 |
+
st.image(image, caption="Uploaded Image", use_column_width=True)
|
198 |
|
199 |
+
with st.spinner("Analyzing image..."):
|
200 |
+
results = st.session_state.image_analyzer.analyze_image(image)
|
201 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
202 |
if results:
|
203 |
+
st.subheader("Detected Defects")
|
204 |
+
|
205 |
+
# Create bar chart
|
206 |
+
defect_probs = results["defect_probabilities"]
|
207 |
+
fig, ax = plt.subplots()
|
208 |
+
defects = list(defect_probs.keys())
|
209 |
+
probs = list(defect_probs.values())
|
210 |
+
ax.barh(defects, probs)
|
211 |
+
ax.set_xlim(0, 1)
|
212 |
+
ax.set_xlabel("Probability")
|
213 |
+
st.pyplot(fig)
|
214 |
+
|
215 |
+
# Show image statistics
|
216 |
+
if st.checkbox("Show Image Details"):
|
217 |
st.json(results["image_statistics"])
|
218 |
|
219 |
+
with col2:
|
220 |
+
st.subheader("Ask About Defects")
|
221 |
+
user_query = st.text_input(
|
222 |
+
"Enter your question about construction defects:",
|
223 |
+
help="Example: What are the repair methods for severe spalling?"
|
224 |
+
)
|
225 |
+
|
226 |
if user_query:
|
227 |
with st.spinner("Processing query..."):
|
228 |
context = st.session_state.rag_system.get_relevant_context(user_query)
|
229 |
response = get_groq_response(user_query, context)
|
230 |
|
231 |
+
st.write("AI Response:")
|
232 |
st.write(response)
|
233 |
|
234 |
+
if st.checkbox("Show Retrieved Context"):
|
235 |
+
st.write("Context Used:")
|
236 |
st.text(context)
|
237 |
|
238 |
+
# Sidebar for history
|
239 |
+
with st.sidebar:
|
240 |
+
st.header("Analysis History")
|
241 |
+
if st.button("Show Recent Analyses"):
|
242 |
+
if st.session_state.image_analyzer.history:
|
243 |
+
for analysis in st.session_state.image_analyzer.history[-5:]:
|
244 |
+
st.write(f"Analysis from: {analysis['timestamp']}")
|
245 |
+
st.json(analysis["defect_probabilities"])
|
246 |
+
else:
|
247 |
+
st.write("No analyses yet")
|
248 |
+
|
249 |
if __name__ == "__main__":
|
250 |
main()
|