Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,150 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#app.py
|
2 |
+
import streamlit as st
|
3 |
+
from transformers import ViTForImageClassification, ViTImageProcessor
|
4 |
+
from PIL import Image
|
5 |
+
import torch
|
6 |
+
from sentence_transformers import SentenceTransformer
|
7 |
+
import faiss
|
8 |
+
import pandas as pd
|
9 |
+
import os
|
10 |
+
from pathlib import Path
|
11 |
+
import json
|
12 |
+
|
13 |
+
DAMAGE_TYPES = {
|
14 |
+
0: {'name': 'spalling', 'risk': 'High'},
|
15 |
+
1: {'name': 'reinforcement_corrosion', 'risk': 'Critical'},
|
16 |
+
2: {'name': 'structural_crack', 'risk': 'High'},
|
17 |
+
3: {'name': 'dampness', 'risk': 'Medium'},
|
18 |
+
4: {'name': 'no_damage', 'risk': 'Low'}
|
19 |
+
}
|
20 |
+
|
21 |
+
@st.cache_resource
|
22 |
+
def load_models():
|
23 |
+
vision_model = ViTForImageClassification.from_pretrained(
|
24 |
+
"google/vit-base-patch16-224",
|
25 |
+
num_labels=len(DAMAGE_TYPES),
|
26 |
+
ignore_mismatched_sizes=True
|
27 |
+
)
|
28 |
+
processor = ViTImageProcessor.from_pretrained("google/vit-base-patch16-224")
|
29 |
+
embedding_model = SentenceTransformer('all-MiniLM-L6-v2')
|
30 |
+
return vision_model, processor, embedding_model
|
31 |
+
|
32 |
+
class DamageKnowledgeBase:
|
33 |
+
def __init__(self, embedding_model):
|
34 |
+
self.embedding_model = embedding_model
|
35 |
+
self.load_knowledge_base()
|
36 |
+
|
37 |
+
def load_knowledge_base(self):
|
38 |
+
# Load dataset metadata and embeddings
|
39 |
+
knowledge_path = Path("data/knowledge_base.json")
|
40 |
+
if knowledge_path.exists():
|
41 |
+
with open(knowledge_path, 'r') as f:
|
42 |
+
self.kb_data = json.load(f)
|
43 |
+
|
44 |
+
# Initialize FAISS index
|
45 |
+
embeddings = torch.load("data/embeddings.pt")
|
46 |
+
self.index = faiss.IndexFlatL2(embeddings.shape[1])
|
47 |
+
self.index.add(embeddings.numpy())
|
48 |
+
else:
|
49 |
+
self.initialize_knowledge_base()
|
50 |
+
|
51 |
+
def initialize_knowledge_base(self):
|
52 |
+
# Sample knowledge base structure
|
53 |
+
self.kb_data = {
|
54 |
+
'spalling': [
|
55 |
+
{
|
56 |
+
'description': 'Severe concrete spalling on column surface',
|
57 |
+
'severity': 'High',
|
58 |
+
'repair_method': 'Remove damaged concrete, clean reinforcement, apply repair mortar',
|
59 |
+
'estimated_cost': 'High',
|
60 |
+
'timeframe': '2-3 weeks',
|
61 |
+
'similar_cases': ['case_123', 'case_456']
|
62 |
+
}
|
63 |
+
],
|
64 |
+
# Add more damage types...
|
65 |
+
}
|
66 |
+
|
67 |
+
# Create embeddings
|
68 |
+
texts = []
|
69 |
+
for damage_type, cases in self.kb_data.items():
|
70 |
+
for case in cases:
|
71 |
+
texts.append(f"{damage_type} {case['description']} {case['repair_method']}")
|
72 |
+
|
73 |
+
embeddings = self.embedding_model.encode(texts)
|
74 |
+
self.index = faiss.IndexFlatL2(embeddings.shape[1])
|
75 |
+
self.index.add(embeddings)
|
76 |
+
|
77 |
+
# Save for future use
|
78 |
+
os.makedirs("data", exist_ok=True)
|
79 |
+
with open("data/knowledge_base.json", 'w') as f:
|
80 |
+
json.dump(self.kb_data, f)
|
81 |
+
torch.save(torch.tensor(embeddings), "data/embeddings.pt")
|
82 |
+
|
83 |
+
def query(self, damage_type, confidence):
|
84 |
+
query = f"damage type: {damage_type}"
|
85 |
+
query_embedding = self.embedding_model.encode([query])
|
86 |
+
D, I = self.index.search(query_embedding, k=3)
|
87 |
+
|
88 |
+
similar_cases = []
|
89 |
+
for idx in I[0]:
|
90 |
+
for damage, cases in self.kb_data.items():
|
91 |
+
for case in cases:
|
92 |
+
case_text = f"{damage} {case['description']} {case['repair_method']}"
|
93 |
+
if len(similar_cases) < 3:
|
94 |
+
similar_cases.append(case)
|
95 |
+
|
96 |
+
return similar_cases
|
97 |
+
|
98 |
+
def analyze_damage(image, model, processor):
|
99 |
+
image = image.convert('RGB')
|
100 |
+
inputs = processor(images=image, return_tensors="pt")
|
101 |
+
outputs = model(**inputs)
|
102 |
+
probs = torch.nn.functional.softmax(outputs.logits, dim=1)[0]
|
103 |
+
return probs
|
104 |
+
|
105 |
+
def main():
|
106 |
+
st.title("Advanced Structural Damage Assessment Tool")
|
107 |
+
|
108 |
+
vision_model, processor, embedding_model = load_models()
|
109 |
+
kb = DamageKnowledgeBase(embedding_model)
|
110 |
+
|
111 |
+
uploaded_file = st.file_uploader("Upload structural image", type=['jpg', 'jpeg', 'png'])
|
112 |
+
|
113 |
+
if uploaded_file:
|
114 |
+
image = Image.open(uploaded_file)
|
115 |
+
st.image(image, caption="Uploaded Structure", use_column_width=True)
|
116 |
+
|
117 |
+
with st.spinner("Analyzing..."):
|
118 |
+
predictions = analyze_damage(image, vision_model, processor)
|
119 |
+
|
120 |
+
col1, col2 = st.columns(2)
|
121 |
+
|
122 |
+
with col1:
|
123 |
+
st.subheader("Damage Assessment")
|
124 |
+
detected_damages = []
|
125 |
+
for idx, prob in enumerate(predictions):
|
126 |
+
confidence = float(prob) * 100
|
127 |
+
if confidence > 15:
|
128 |
+
damage_type = DAMAGE_TYPES[idx]['name']
|
129 |
+
detected_damages.append((damage_type, confidence))
|
130 |
+
|
131 |
+
st.write(f"**{damage_type.replace('_', ' ').title()}**")
|
132 |
+
st.progress(confidence / 100)
|
133 |
+
st.write(f"Confidence: {confidence:.1f}%")
|
134 |
+
st.write(f"Risk Level: {DAMAGE_TYPES[idx]['risk']}")
|
135 |
+
|
136 |
+
with col2:
|
137 |
+
st.subheader("Similar Cases & Recommendations")
|
138 |
+
for damage_type, confidence in detected_damages:
|
139 |
+
similar_cases = kb.query(damage_type, confidence)
|
140 |
+
|
141 |
+
st.write(f"**{damage_type.replace('_', ' ').title()}:**")
|
142 |
+
for case in similar_cases:
|
143 |
+
with st.expander(f"Similar Case - {case['severity']} Severity"):
|
144 |
+
st.write(f"Description: {case['description']}")
|
145 |
+
st.write(f"Repair Method: {case['repair_method']}")
|
146 |
+
st.write(f"Estimated Cost: {case['estimated_cost']}")
|
147 |
+
st.write(f"Timeframe: {case['timeframe']}")
|
148 |
+
|
149 |
+
if __name__ == "__main__":
|
150 |
+
main()
|