#app.py import streamlit as st from transformers import ViTForImageClassification, ViTImageProcessor from PIL import Image import torch from sentence_transformers import SentenceTransformer import faiss import pandas as pd import os from pathlib import Path import json DAMAGE_TYPES = { 0: {'name': 'spalling', 'risk': 'High'}, 1: {'name': 'reinforcement_corrosion', 'risk': 'Critical'}, 2: {'name': 'structural_crack', 'risk': 'High'}, 3: {'name': 'dampness', 'risk': 'Medium'}, 4: {'name': 'no_damage', 'risk': 'Low'} } @st.cache_resource def load_models(): vision_model = ViTForImageClassification.from_pretrained( "google/vit-base-patch16-224", num_labels=len(DAMAGE_TYPES), ignore_mismatched_sizes=True ) processor = ViTImageProcessor.from_pretrained("google/vit-base-patch16-224") embedding_model = SentenceTransformer('all-MiniLM-L6-v2') return vision_model, processor, embedding_model class DamageKnowledgeBase: def __init__(self, embedding_model): self.embedding_model = embedding_model self.load_knowledge_base() def load_knowledge_base(self): # Load dataset metadata and embeddings knowledge_path = Path("data/knowledge_base.json") if knowledge_path.exists(): with open(knowledge_path, 'r') as f: self.kb_data = json.load(f) # Initialize FAISS index embeddings = torch.load("data/embeddings.pt") self.index = faiss.IndexFlatL2(embeddings.shape[1]) self.index.add(embeddings.numpy()) else: self.initialize_knowledge_base() def initialize_knowledge_base(self): # Sample knowledge base structure self.kb_data = { 'spalling': [ { 'description': 'Severe concrete spalling on column surface', 'severity': 'High', 'repair_method': 'Remove damaged concrete, clean reinforcement, apply repair mortar', 'estimated_cost': 'High', 'timeframe': '2-3 weeks', 'similar_cases': ['case_123', 'case_456'] } ], # Add more damage types... } # Create embeddings texts = [] for damage_type, cases in self.kb_data.items(): for case in cases: texts.append(f"{damage_type} {case['description']} {case['repair_method']}") embeddings = self.embedding_model.encode(texts) self.index = faiss.IndexFlatL2(embeddings.shape[1]) self.index.add(embeddings) # Save for future use os.makedirs("data", exist_ok=True) with open("data/knowledge_base.json", 'w') as f: json.dump(self.kb_data, f) torch.save(torch.tensor(embeddings), "data/embeddings.pt") def query(self, damage_type, confidence): query = f"damage type: {damage_type}" query_embedding = self.embedding_model.encode([query]) D, I = self.index.search(query_embedding, k=3) similar_cases = [] for idx in I[0]: for damage, cases in self.kb_data.items(): for case in cases: case_text = f"{damage} {case['description']} {case['repair_method']}" if len(similar_cases) < 3: similar_cases.append(case) return similar_cases def analyze_damage(image, model, processor): image = image.convert('RGB') inputs = processor(images=image, return_tensors="pt") outputs = model(**inputs) probs = torch.nn.functional.softmax(outputs.logits, dim=1)[0] return probs def main(): st.title("Advanced Structural Damage Assessment Tool") vision_model, processor, embedding_model = load_models() kb = DamageKnowledgeBase(embedding_model) uploaded_file = st.file_uploader("Upload structural image", type=['jpg', 'jpeg', 'png']) if uploaded_file: image = Image.open(uploaded_file) st.image(image, caption="Uploaded Structure", use_column_width=True) with st.spinner("Analyzing..."): predictions = analyze_damage(image, vision_model, processor) col1, col2 = st.columns(2) with col1: st.subheader("Damage Assessment") detected_damages = [] for idx, prob in enumerate(predictions): confidence = float(prob) * 100 if confidence > 15: damage_type = DAMAGE_TYPES[idx]['name'] detected_damages.append((damage_type, confidence)) st.write(f"**{damage_type.replace('_', ' ').title()}**") st.progress(confidence / 100) st.write(f"Confidence: {confidence:.1f}%") st.write(f"Risk Level: {DAMAGE_TYPES[idx]['risk']}") with col2: st.subheader("Similar Cases & Recommendations") for damage_type, confidence in detected_damages: similar_cases = kb.query(damage_type, confidence) st.write(f"**{damage_type.replace('_', ' ').title()}:**") for case in similar_cases: with st.expander(f"Similar Case - {case['severity']} Severity"): st.write(f"Description: {case['description']}") st.write(f"Repair Method: {case['repair_method']}") st.write(f"Estimated Cost: {case['estimated_cost']}") st.write(f"Timeframe: {case['timeframe']}") if __name__ == "__main__": main()