Shakir60 commited on
Commit
7136f34
·
verified ·
1 Parent(s): 34c3a2b

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +58 -143
app.py CHANGED
@@ -1,152 +1,67 @@
1
- import streamlit as st
2
  import torch
3
- from transformers import ViTForImageClassification, ViTImageProcessor, pipeline
4
- from PIL import Image
5
- import pandas as pd
6
- from langchain_community.embeddings import HuggingFaceEmbeddings
7
- from langchain_community.llms import HuggingFaceHub
8
- from langchain_community.vectorstores import FAISS
9
- from langchain.text_splitter import RecursiveCharacterTextSplitter
10
- from langchain.docstore.document import Document
11
- from langchain.prompts import PromptTemplate
12
- from langchain.chains import RetrievalQA
13
- import os
14
 
15
- # Page config
16
- st.set_page_config(
17
- page_title="Building Damage Analysis",
18
- page_icon="🏗️",
19
- layout="wide"
20
- )
21
 
22
- # Initialize models
23
- @st.cache_resource
24
- def load_models():
25
- # Vision model
26
- from huggingface_hub import login
27
- login(token="HUGGINGFACE_API_TOKEN")
28
- damage_model = ViTForImageClassification.from_pretrained(
29
- "microsoft/vit-base-patch16-224",
30
- use_auth_token=True
31
- )
32
- processor = ViTImageProcessor.from_pretrained("microsoft/vit-base-patch16-224")
33
-
34
- # Text model
35
- llm = HuggingFaceHub(
36
- repo_id="google/flan-t5-large",
37
- model_kwargs={"temperature": 0.7, "max_length": 512}
38
- )
39
-
40
- embeddings = HuggingFaceEmbeddings(
41
- model_name='sentence-transformers/all-MiniLM-L6-v2'
42
- )
43
-
44
- return damage_model, processor, embeddings, llm
45
 
46
- # Sample data - in production, you'd load this from a proper dataset
47
- SAMPLE_DATA = [
48
- {
49
- "repair_description": "Major wall crack requiring structural repair. Steel plate reinforcement needed.",
50
- "repair_cost": 5000,
51
- "damage_type": "Wall Crack"
52
- },
53
- {
54
- "repair_description": "Concrete beam damage with exposed rebar. Requires immediate attention.",
55
- "repair_cost": 7500,
56
- "damage_type": "Beam Damage"
57
- },
58
- {
59
- "repair_description": "Foundation settling causing structural issues. Need underpinning.",
60
- "repair_cost": 15000,
61
- "damage_type": "Foundation Issue"
62
- }
63
- ]
64
 
65
- def setup_rag(embeddings, llm):
66
- # Create documents from sample data
67
- documents = [
68
- Document(
69
- page_content=f"{item['repair_description']} Cost: ${item['repair_cost']}",
70
- metadata={'cost': item['repair_cost'], 'damage_type': item['damage_type']}
71
- )
72
- for item in SAMPLE_DATA
73
- ]
74
-
75
- # Create vector store
76
- vectorstore = FAISS.from_documents(documents, embeddings)
77
-
78
- # Create prompt template
79
- template = """
80
- Analyze building damage and provide repair recommendations based on this context:
81
- {context}
82
-
83
- For damage type: {question}
84
-
85
- Provide:
86
- 1. Damage assessment
87
- 2. Repair steps
88
- 3. Safety considerations
89
- 4. Estimated cost range
90
- """
91
-
92
- prompt = PromptTemplate(template=template, input_variables=["context", "question"])
93
-
94
- # Create QA chain
95
- qa_chain = RetrievalQA.from_chain_type(
96
- llm=llm,
97
- chain_type="stuff",
98
- retriever=vectorstore.as_retriever(search_kwargs={'k': 2}),
99
- chain_type_kwargs={"prompt": prompt}
100
- )
101
-
102
- return qa_chain
103
 
104
- def process_image(image, model, processor):
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
105
  inputs = processor(images=image, return_tensors="pt")
106
- outputs = model(**inputs)
107
- predictions = torch.nn.functional.softmax(outputs.logits, dim=-1)
108
- return predictions[0].tolist()
 
 
 
 
 
 
 
 
 
109
 
110
- def main():
111
- st.title("🏗️ Building Damage Detection & Analysis")
112
- st.markdown("""
113
- Upload a photo of building damage for AI analysis and repair recommendations.
114
- """)
115
-
116
- # Load models on first run
117
- if 'models_loaded' not in st.session_state:
118
- with st.spinner('Loading AI models...'):
119
- damage_model, processor, embeddings, llm = load_models()
120
- qa_chain = setup_rag(embeddings, llm)
121
- st.session_state['models_loaded'] = True
122
- st.session_state['models'] = (damage_model, processor, qa_chain)
123
-
124
- damage_model, processor, qa_chain = st.session_state['models']
125
-
126
- # File upload
127
- uploaded_file = st.file_uploader("Upload building damage photo", type=["jpg", "jpeg", "png"])
128
-
129
- if uploaded_file:
130
- # Display image
131
- image = Image.open(uploaded_file)
132
- st.image(image, caption="Uploaded Image", use_column_width=True)
133
-
134
- with st.spinner('Analyzing damage...'):
135
- # Process image
136
- predictions = process_image(image, damage_model, processor)
137
- damage_types = ["Wall Crack", "Beam Damage", "Foundation Issue",
138
- "Roof Damage", "Structural Damage"]
139
-
140
- # Show results
141
- st.subheader("Detected Damage Types")
142
- for damage_type, prob in zip(damage_types, predictions):
143
- if prob > 0.2:
144
- st.metric(damage_type, f"{prob:.1%}")
145
-
146
- with st.spinner(f'Generating analysis for {damage_type}...'):
147
- analysis = qa_chain.invoke(damage_type)
148
- st.markdown(f"### Analysis for {damage_type}")
149
- st.markdown(analysis['result'])
150
 
151
- if __name__ == "__main__":
152
- main()
 
1
+ from flask import Flask, request, jsonify
2
  import torch
3
+ from transformers import AutoProcessor, AutoModelForImageClassification
4
+ from sentence_transformers import SentenceTransformer
5
+ import sqlite3
 
 
 
 
 
 
 
 
6
 
7
+ app = Flask(__name__)
 
 
 
 
 
8
 
9
+ # Load the defect detection model (open-source, hugging face model)
10
+ DETECTION_MODEL_NAME = "microsoft/beit-base-patch16-224-pt22k-ft22k"
11
+ processor = AutoProcessor.from_pretrained(DETECTION_MODEL_NAME)
12
+ detection_model = AutoModelForImageClassification.from_pretrained(DETECTION_MODEL_NAME)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
13
 
14
+ defects_to_remedies = {
15
+ "crack": "Fill cracks with epoxy. Structural cracks might need professional inspection.",
16
+ "spalling": "Clean affected area and apply anti-corrosion primer before repairing.",
17
+ "leakage": "Fix water source, seal with water-proofing compounds.",
18
+ "mold": "Clean the mold, improve ventilation, and apply mold-resistant paint."
19
+ }
 
 
 
 
 
 
 
 
 
 
 
 
20
 
21
+ # Initialize a Sentence Transformer for text embeddings
22
+ EMBEDDING_MODEL_NAME = "sentence-transformers/all-MiniLM-L6-v2"
23
+ embedding_model = SentenceTransformer(EMBEDDING_MODEL_NAME)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
24
 
25
+ # SQLite database setup
26
+ db_conn = sqlite3.connect('defects.db', check_same_thread=False)
27
+ c = db_conn.cursor()
28
+ c.execute('''CREATE TABLE IF NOT EXISTS defects (id INTEGER PRIMARY KEY, defect TEXT, remedy TEXT, embedding BLOB)''')
29
+ db_conn.commit()
30
+
31
+ # Populate defect remedies table if empty
32
+ def seed_database():
33
+ for defect, remedy in defects_to_remedies.items():
34
+ c.execute("SELECT * FROM defects WHERE defect=?", (defect,))
35
+ if not c.fetchone():
36
+ embedding = embedding_model.encode(remedy).tolist()
37
+ c.execute("INSERT INTO defects (defect, remedy, embedding) VALUES (?, ?, ?)", (defect, remedy, str(embedding)))
38
+ db_conn.commit()
39
+
40
+ seed_database()
41
+
42
+ @app.route('/detect', methods=['POST'])
43
+ def detect_defect():
44
+ if 'image' not in request.files:
45
+ return jsonify({"error": "No image uploaded."}), 400
46
+
47
+ image = request.files['image'].read()
48
+
49
+ # Preprocess and predict the defect
50
  inputs = processor(images=image, return_tensors="pt")
51
+ outputs = detection_model(**inputs)
52
+ probs = torch.nn.functional.softmax(outputs.logits, dim=1)
53
+ predicted_class = torch.argmax(probs, dim=1)
54
+ class_name = detection_model.config.id2label[predicted_class.item()]
55
+
56
+ # Query remedy
57
+ c.execute("SELECT remedy FROM defects WHERE defect=?", (class_name,))
58
+ row = c.fetchone()
59
+ if row:
60
+ remedy = row[0]
61
+ else:
62
+ remedy = "No specific remedy available for this defect."
63
 
64
+ return jsonify({"detected_defect": class_name, "remedy": remedy})
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
65
 
66
+ if __name__ == '__main__':
67
+ app.run(debug=True)