Update app.py
Browse files
app.py
CHANGED
@@ -1,152 +1,67 @@
|
|
1 |
-
import
|
2 |
import torch
|
3 |
-
from transformers import
|
4 |
-
from
|
5 |
-
import
|
6 |
-
from langchain_community.embeddings import HuggingFaceEmbeddings
|
7 |
-
from langchain_community.llms import HuggingFaceHub
|
8 |
-
from langchain_community.vectorstores import FAISS
|
9 |
-
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
10 |
-
from langchain.docstore.document import Document
|
11 |
-
from langchain.prompts import PromptTemplate
|
12 |
-
from langchain.chains import RetrievalQA
|
13 |
-
import os
|
14 |
|
15 |
-
|
16 |
-
st.set_page_config(
|
17 |
-
page_title="Building Damage Analysis",
|
18 |
-
page_icon="🏗️",
|
19 |
-
layout="wide"
|
20 |
-
)
|
21 |
|
22 |
-
#
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
from huggingface_hub import login
|
27 |
-
login(token="HUGGINGFACE_API_TOKEN")
|
28 |
-
damage_model = ViTForImageClassification.from_pretrained(
|
29 |
-
"microsoft/vit-base-patch16-224",
|
30 |
-
use_auth_token=True
|
31 |
-
)
|
32 |
-
processor = ViTImageProcessor.from_pretrained("microsoft/vit-base-patch16-224")
|
33 |
-
|
34 |
-
# Text model
|
35 |
-
llm = HuggingFaceHub(
|
36 |
-
repo_id="google/flan-t5-large",
|
37 |
-
model_kwargs={"temperature": 0.7, "max_length": 512}
|
38 |
-
)
|
39 |
-
|
40 |
-
embeddings = HuggingFaceEmbeddings(
|
41 |
-
model_name='sentence-transformers/all-MiniLM-L6-v2'
|
42 |
-
)
|
43 |
-
|
44 |
-
return damage_model, processor, embeddings, llm
|
45 |
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
},
|
53 |
-
{
|
54 |
-
"repair_description": "Concrete beam damage with exposed rebar. Requires immediate attention.",
|
55 |
-
"repair_cost": 7500,
|
56 |
-
"damage_type": "Beam Damage"
|
57 |
-
},
|
58 |
-
{
|
59 |
-
"repair_description": "Foundation settling causing structural issues. Need underpinning.",
|
60 |
-
"repair_cost": 15000,
|
61 |
-
"damage_type": "Foundation Issue"
|
62 |
-
}
|
63 |
-
]
|
64 |
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
Document(
|
69 |
-
page_content=f"{item['repair_description']} Cost: ${item['repair_cost']}",
|
70 |
-
metadata={'cost': item['repair_cost'], 'damage_type': item['damage_type']}
|
71 |
-
)
|
72 |
-
for item in SAMPLE_DATA
|
73 |
-
]
|
74 |
-
|
75 |
-
# Create vector store
|
76 |
-
vectorstore = FAISS.from_documents(documents, embeddings)
|
77 |
-
|
78 |
-
# Create prompt template
|
79 |
-
template = """
|
80 |
-
Analyze building damage and provide repair recommendations based on this context:
|
81 |
-
{context}
|
82 |
-
|
83 |
-
For damage type: {question}
|
84 |
-
|
85 |
-
Provide:
|
86 |
-
1. Damage assessment
|
87 |
-
2. Repair steps
|
88 |
-
3. Safety considerations
|
89 |
-
4. Estimated cost range
|
90 |
-
"""
|
91 |
-
|
92 |
-
prompt = PromptTemplate(template=template, input_variables=["context", "question"])
|
93 |
-
|
94 |
-
# Create QA chain
|
95 |
-
qa_chain = RetrievalQA.from_chain_type(
|
96 |
-
llm=llm,
|
97 |
-
chain_type="stuff",
|
98 |
-
retriever=vectorstore.as_retriever(search_kwargs={'k': 2}),
|
99 |
-
chain_type_kwargs={"prompt": prompt}
|
100 |
-
)
|
101 |
-
|
102 |
-
return qa_chain
|
103 |
|
104 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
105 |
inputs = processor(images=image, return_tensors="pt")
|
106 |
-
outputs =
|
107 |
-
|
108 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
109 |
|
110 |
-
|
111 |
-
st.title("🏗️ Building Damage Detection & Analysis")
|
112 |
-
st.markdown("""
|
113 |
-
Upload a photo of building damage for AI analysis and repair recommendations.
|
114 |
-
""")
|
115 |
-
|
116 |
-
# Load models on first run
|
117 |
-
if 'models_loaded' not in st.session_state:
|
118 |
-
with st.spinner('Loading AI models...'):
|
119 |
-
damage_model, processor, embeddings, llm = load_models()
|
120 |
-
qa_chain = setup_rag(embeddings, llm)
|
121 |
-
st.session_state['models_loaded'] = True
|
122 |
-
st.session_state['models'] = (damage_model, processor, qa_chain)
|
123 |
-
|
124 |
-
damage_model, processor, qa_chain = st.session_state['models']
|
125 |
-
|
126 |
-
# File upload
|
127 |
-
uploaded_file = st.file_uploader("Upload building damage photo", type=["jpg", "jpeg", "png"])
|
128 |
-
|
129 |
-
if uploaded_file:
|
130 |
-
# Display image
|
131 |
-
image = Image.open(uploaded_file)
|
132 |
-
st.image(image, caption="Uploaded Image", use_column_width=True)
|
133 |
-
|
134 |
-
with st.spinner('Analyzing damage...'):
|
135 |
-
# Process image
|
136 |
-
predictions = process_image(image, damage_model, processor)
|
137 |
-
damage_types = ["Wall Crack", "Beam Damage", "Foundation Issue",
|
138 |
-
"Roof Damage", "Structural Damage"]
|
139 |
-
|
140 |
-
# Show results
|
141 |
-
st.subheader("Detected Damage Types")
|
142 |
-
for damage_type, prob in zip(damage_types, predictions):
|
143 |
-
if prob > 0.2:
|
144 |
-
st.metric(damage_type, f"{prob:.1%}")
|
145 |
-
|
146 |
-
with st.spinner(f'Generating analysis for {damage_type}...'):
|
147 |
-
analysis = qa_chain.invoke(damage_type)
|
148 |
-
st.markdown(f"### Analysis for {damage_type}")
|
149 |
-
st.markdown(analysis['result'])
|
150 |
|
151 |
-
if __name__ ==
|
152 |
-
|
|
|
1 |
+
from flask import Flask, request, jsonify
|
2 |
import torch
|
3 |
+
from transformers import AutoProcessor, AutoModelForImageClassification
|
4 |
+
from sentence_transformers import SentenceTransformer
|
5 |
+
import sqlite3
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
|
7 |
+
app = Flask(__name__)
|
|
|
|
|
|
|
|
|
|
|
8 |
|
9 |
+
# Load the defect detection model (open-source, hugging face model)
|
10 |
+
DETECTION_MODEL_NAME = "microsoft/beit-base-patch16-224-pt22k-ft22k"
|
11 |
+
processor = AutoProcessor.from_pretrained(DETECTION_MODEL_NAME)
|
12 |
+
detection_model = AutoModelForImageClassification.from_pretrained(DETECTION_MODEL_NAME)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
|
14 |
+
defects_to_remedies = {
|
15 |
+
"crack": "Fill cracks with epoxy. Structural cracks might need professional inspection.",
|
16 |
+
"spalling": "Clean affected area and apply anti-corrosion primer before repairing.",
|
17 |
+
"leakage": "Fix water source, seal with water-proofing compounds.",
|
18 |
+
"mold": "Clean the mold, improve ventilation, and apply mold-resistant paint."
|
19 |
+
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
|
21 |
+
# Initialize a Sentence Transformer for text embeddings
|
22 |
+
EMBEDDING_MODEL_NAME = "sentence-transformers/all-MiniLM-L6-v2"
|
23 |
+
embedding_model = SentenceTransformer(EMBEDDING_MODEL_NAME)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
|
25 |
+
# SQLite database setup
|
26 |
+
db_conn = sqlite3.connect('defects.db', check_same_thread=False)
|
27 |
+
c = db_conn.cursor()
|
28 |
+
c.execute('''CREATE TABLE IF NOT EXISTS defects (id INTEGER PRIMARY KEY, defect TEXT, remedy TEXT, embedding BLOB)''')
|
29 |
+
db_conn.commit()
|
30 |
+
|
31 |
+
# Populate defect remedies table if empty
|
32 |
+
def seed_database():
|
33 |
+
for defect, remedy in defects_to_remedies.items():
|
34 |
+
c.execute("SELECT * FROM defects WHERE defect=?", (defect,))
|
35 |
+
if not c.fetchone():
|
36 |
+
embedding = embedding_model.encode(remedy).tolist()
|
37 |
+
c.execute("INSERT INTO defects (defect, remedy, embedding) VALUES (?, ?, ?)", (defect, remedy, str(embedding)))
|
38 |
+
db_conn.commit()
|
39 |
+
|
40 |
+
seed_database()
|
41 |
+
|
42 |
+
@app.route('/detect', methods=['POST'])
|
43 |
+
def detect_defect():
|
44 |
+
if 'image' not in request.files:
|
45 |
+
return jsonify({"error": "No image uploaded."}), 400
|
46 |
+
|
47 |
+
image = request.files['image'].read()
|
48 |
+
|
49 |
+
# Preprocess and predict the defect
|
50 |
inputs = processor(images=image, return_tensors="pt")
|
51 |
+
outputs = detection_model(**inputs)
|
52 |
+
probs = torch.nn.functional.softmax(outputs.logits, dim=1)
|
53 |
+
predicted_class = torch.argmax(probs, dim=1)
|
54 |
+
class_name = detection_model.config.id2label[predicted_class.item()]
|
55 |
+
|
56 |
+
# Query remedy
|
57 |
+
c.execute("SELECT remedy FROM defects WHERE defect=?", (class_name,))
|
58 |
+
row = c.fetchone()
|
59 |
+
if row:
|
60 |
+
remedy = row[0]
|
61 |
+
else:
|
62 |
+
remedy = "No specific remedy available for this defect."
|
63 |
|
64 |
+
return jsonify({"detected_defect": class_name, "remedy": remedy})
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
65 |
|
66 |
+
if __name__ == '__main__':
|
67 |
+
app.run(debug=True)
|