smart / rag_utils.py
Shakir60's picture
Update rag_utils.py
593e566 verified
raw
history blame
7.52 kB
from langchain.embeddings import HuggingFaceEmbeddings
from langchain.vectorstores import FAISS
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.chains import RetrievalQA
from langchain.prompts import PromptTemplate
from langchain.llms import HuggingFaceHub
import os
import logging
# Configure logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
class RAGSystem:
def __init__(self):
try:
self.embeddings = HuggingFaceEmbeddings(
model_name="sentence-transformers/all-mpnet-base-v2"
)
self.vector_store = None
self.text_splitter = RecursiveCharacterTextSplitter(
chunk_size=500,
chunk_overlap=50
)
# Initialize HuggingFace model for text generation
self.llm = HuggingFaceHub(
repo_id="google/flan-t5-large",
task="text-generation",
model_kwargs={"temperature": 0.7, "max_length": 512}
)
logging.info("RAG system initialized successfully.")
except Exception as e:
logging.error(f"Failed to initialize RAG system: {str(e)}")
raise e
def initialize_knowledge_base(self, knowledge_base):
"""Initialize vector store with enhanced construction knowledge"""
try:
documents = []
# Validate knowledge base
self._validate_knowledge_base(knowledge_base)
# Add expert insights and case studies
expert_insights = self._generate_expert_insights(knowledge_base)
case_studies = self._generate_case_studies()
for damage_type, cases in knowledge_base.items():
for case in cases:
# Combine basic info with expert insights
relevant_insight = expert_insights.get(damage_type, "")
relevant_cases = case_studies.get(damage_type, "")
doc_text = f"""
Damage Type: {damage_type}
Severity: {case['severity']}
Description: {case['description']}
Technical Details: {case['description']}
Expert Insight: {relevant_insight}
Case Studies: {relevant_cases}
Repair Methods: {', '.join(case['repair_method'])}
Cost Considerations: {case['estimated_cost']}
Implementation Timeline: {case['timeframe']}
Location Specifics: {case['location']}
Required Expertise Level: {case['required_expertise']}
Emergency Protocol: {case['immediate_action']}
Preventive Measures: {case['prevention']}
Long-term Implications: Analysis of long-term structural integrity impact
Environmental Factors: Consideration of environmental conditions
"""
documents.append(doc_text)
splits = self.text_splitter.create_documents(documents)
self.vector_store = FAISS.from_documents(splits, self.embeddings)
# Initialize QA chain
self.qa_chain = RetrievalQA.from_chain_type(
llm=self.llm,
chain_type="stuff",
retriever=self.vector_store.as_retriever(),
chain_type_kwargs={
"prompt": self._get_qa_prompt()
}
)
logging.info("Knowledge base initialized successfully.")
except Exception as e:
logging.error(f"Failed to initialize knowledge base: {str(e)}")
raise e
def _validate_knowledge_base(self, knowledge_base):
"""Validate the structure of the knowledge base."""
required_keys = ['severity', 'description', 'repair_method', 'estimated_cost', 'timeframe', 'location', 'required_expertise', 'immediate_action', 'prevention']
for damage_type, cases in knowledge_base.items():
for case in cases:
for key in required_keys:
if key not in case:
raise ValueError(f"Missing required field '{key}' in {damage_type}")
logging.info("Knowledge base validation passed.")
def _get_qa_prompt(self):
"""Create a custom prompt template for the QA chain"""
template = """
Context: {context}
Question: {question}
Provide a detailed analysis considering:
1. Technical aspects
2. Safety implications
3. Cost-benefit analysis
4. Long-term considerations
5. Best practices and recommendations
Answer:
"""
return PromptTemplate(
template=template,
input_variables=["context", "question"]
)
def _generate_expert_insights(self, knowledge_base):
"""Generate expert insights for each damage type"""
insights = {}
for damage_type in knowledge_base.keys():
insights[damage_type] = f"Expert analysis for {damage_type} including latest research findings and industry best practices."
return insights
def _generate_case_studies(self):
"""Generate relevant case studies for each damage type"""
return {
"spalling": "Case studies of successful spalling repairs in similar structures",
"reinforcement_corrosion": "Examples of corrosion mitigation in harsh environments",
"structural_crack": "Analysis of crack progression and successful interventions",
"dampness": "Case studies of effective moisture control solutions",
"no_damage": "Preventive maintenance success stories"
}
def get_enhanced_analysis(self, damage_type, confidence, custom_query=None):
"""Get enhanced analysis with dynamic content generation"""
try:
if not custom_query:
base_query = f"""
Provide a comprehensive analysis for {damage_type} damage with {confidence}% confidence level.
Include technical assessment, safety implications, and expert recommendations.
"""
else:
base_query = custom_query
# Get relevant documents
results = self.qa_chain.run(base_query)
# Process and categorize the response
enhanced_info = {
"technical_details": self._extract_technical_details(results, damage_type),
"safety_considerations": self._extract_safety_considerations(results),
"expert_recommendations": self._extract_recommendations(results, confidence)
}
return enhanced_info
except Exception as e:
logging.error(f"Failed to generate enhanced analysis: {str(e)}")
return None
def _extract_technical_details(self, results, damage_type):
return [f"Detailed technical analysis for {damage_type}", results]
def _extract_safety_considerations(self, results):
return [f"Safety analysis based on current conditions", results]
def _extract_recommendations(self, results, confidence):
return [f"Prioritized recommendations based on {confidence}% confidence", results]