|
from langchain.embeddings import HuggingFaceEmbeddings |
|
from langchain.vectorstores import FAISS |
|
from langchain.text_splitter import RecursiveCharacterTextSplitter |
|
from langchain.chains import RetrievalQA |
|
from langchain.prompts import PromptTemplate |
|
from langchain.llms import HuggingFaceHub |
|
import os |
|
import logging |
|
|
|
|
|
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s') |
|
|
|
class RAGSystem: |
|
def __init__(self): |
|
try: |
|
|
|
self.embeddings = HuggingFaceEmbeddings( |
|
model_name="sentence-transformers/all-mpnet-base-v2" |
|
) |
|
self.vector_store = None |
|
self.text_splitter = RecursiveCharacterTextSplitter( |
|
chunk_size=500, |
|
chunk_overlap=50 |
|
) |
|
|
|
self.llm = HuggingFaceHub( |
|
repo_id="google/flan-t5-large", |
|
task="text-generation", |
|
model_kwargs={"temperature": 0.7, "max_length": 512} |
|
) |
|
logging.info("RAG system initialized successfully.") |
|
except Exception as e: |
|
logging.error(f"Failed to initialize RAG system: {str(e)}") |
|
raise e |
|
|
|
def initialize_knowledge_base(self, knowledge_base): |
|
"""Initialize vector store with enhanced construction knowledge""" |
|
try: |
|
documents = [] |
|
|
|
self._validate_knowledge_base(knowledge_base) |
|
|
|
|
|
expert_insights = self._generate_expert_insights(knowledge_base) |
|
case_studies = self._generate_case_studies() |
|
|
|
for damage_type, cases in knowledge_base.items(): |
|
for idx, case in enumerate(cases): |
|
try: |
|
|
|
relevant_insight = expert_insights.get(damage_type, "") |
|
relevant_cases = case_studies.get(damage_type, "") |
|
|
|
doc_text = f""" |
|
Damage Type: {damage_type} |
|
Severity: {case['severity']} |
|
Description: {case['description']} |
|
Technical Details: {case['description']} |
|
Expert Insight: {relevant_insight} |
|
Case Studies: {relevant_cases} |
|
Repair Methods: {', '.join(case['repair_method'])} |
|
Cost Considerations: {case['estimated_cost']} |
|
Implementation Timeline: {case['timeframe']} |
|
Location Specifics: {case['location']} |
|
Required Expertise Level: {case['required_expertise']} |
|
Emergency Protocol: {case['immediate_action']} |
|
Preventive Measures: {case['prevention']} |
|
""" |
|
documents.append(doc_text) |
|
except KeyError as e: |
|
logging.warning(f"Missing key {str(e)} in {damage_type}, case {idx + 1}. Skipping.") |
|
|
|
if not documents: |
|
raise ValueError("No valid documents to process.") |
|
|
|
splits = self.text_splitter.create_documents(documents) |
|
self.vector_store = FAISS.from_documents(splits, self.embeddings) |
|
|
|
|
|
self.qa_chain = RetrievalQA.from_chain_type( |
|
llm=self.llm, |
|
chain_type="stuff", |
|
retriever=self.vector_store.as_retriever(), |
|
chain_type_kwargs={ |
|
"prompt": self._get_qa_prompt() |
|
} |
|
) |
|
logging.info("Knowledge base initialized successfully.") |
|
except Exception as e: |
|
logging.error(f"Failed to initialize knowledge base: {str(e)}") |
|
raise e |
|
|
|
def _validate_knowledge_base(self, knowledge_base): |
|
"""Validate the structure of the knowledge base.""" |
|
required_keys = ['severity', 'description', 'repair_method', 'estimated_cost', 'timeframe', 'location', 'required_expertise', 'immediate_action', 'prevention'] |
|
for damage_type, cases in knowledge_base.items(): |
|
for idx, case in enumerate(cases): |
|
for key in required_keys: |
|
if key not in case: |
|
logging.error(f"Missing required field '{key}' in {damage_type}, case {idx + 1}") |
|
raise ValueError(f"Missing required field '{key}' in {damage_type}, case {idx + 1}") |
|
logging.info("Knowledge base validation passed.") |
|
|
|
def _get_qa_prompt(self): |
|
"""Create a custom prompt template for the QA chain""" |
|
template = """ |
|
Context: {context} |
|
|
|
Question: {question} |
|
|
|
Provide a detailed analysis considering: |
|
1. Technical aspects |
|
2. Safety implications |
|
3. Cost-benefit analysis |
|
4. Long-term considerations |
|
5. Best practices and recommendations |
|
|
|
Answer: |
|
""" |
|
return PromptTemplate( |
|
template=template, |
|
input_variables=["context", "question"] |
|
) |
|
|
|
def get_enhanced_analysis(self, damage_type, confidence, custom_query=None): |
|
"""Get enhanced analysis with dynamic content generation""" |
|
try: |
|
if not self.vector_store: |
|
raise ValueError("Vector store is not initialized.") |
|
|
|
if not custom_query: |
|
base_query = f""" |
|
Provide a comprehensive analysis for {damage_type} damage with {confidence}% confidence level. |
|
Include technical assessment, safety implications, and expert recommendations. |
|
""" |
|
else: |
|
base_query = custom_query |
|
|
|
|
|
results = self.qa_chain.run(base_query) |
|
if not results: |
|
logging.warning("No results returned for query.") |
|
return {"technical_details": [], "safety_considerations": [], "expert_recommendations": []} |
|
|
|
|
|
enhanced_info = { |
|
"technical_details": self._extract_technical_details(results, damage_type), |
|
"safety_considerations": self._extract_safety_considerations(results), |
|
"expert_recommendations": self._extract_recommendations(results, confidence) |
|
} |
|
return enhanced_info |
|
except Exception as e: |
|
logging.error(f"Failed to generate enhanced analysis: {str(e)}") |
|
return {"technical_details": [], "safety_considerations": [], "expert_recommendations": []} |