smart / app.py
Shakir60's picture
Update app.py
dbd2162 verified
raw
history blame
11.1 kB
import streamlit as st
from transformers import (
AutoModelForImageClassification,
AutoImageProcessor,
ViTForImageClassification,
ResNetForImageClassification
)
import torch
import numpy as np
from PIL import Image, ImageDraw
import cv2
from langchain import FAISS
from langchain.embeddings import HuggingFaceEmbeddings
from langchain.chains import RetrievalQA
from langchain.llms import HuggingFacePipeline
import json
import os
from concurrent.futures import ThreadPoolExecutor
import pandas as pd
class DefectMeasurement:
"""Handle defect measurements and severity estimation"""
@staticmethod
def measure_defect(image, defect_type):
"""Measure defect dimensions using computer vision"""
img_array = np.array(image)
gray = cv2.cvtColor(img_array, cv2.COLOR_RGB2GRAY)
if defect_type == "Crack":
# Crack width measurement
blur = cv2.GaussianBlur(gray, (3,3), 0)
edges = cv2.Canny(blur, 100, 200)
lines = cv2.HoughLinesP(edges, 1, np.pi/180, 50, minLineLength=100, maxLineGap=10)
if lines is not None:
max_length = 0
for line in lines:
x1, y1, x2, y2 = line[0]
length = np.sqrt((x2-x1)**2 + (y2-y1)**2)
max_length = max(max_length, length)
return {"length": max_length, "unit": "pixels"}
elif defect_type in ["Spalling", "Exposed_Bars"]:
# Area measurement
thresh = cv2.threshold(gray, 127, 255, cv2.THRESH_BINARY)[1]
contours, _ = cv2.findContours(thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
if contours:
max_area = max(cv2.contourArea(cnt) for cnt in contours)
return {"area": max_area, "unit": "square pixels"}
return None
class MultiModelAnalyzer:
"""Handle multiple pre-trained models for defect detection"""
def __init__(self):
self.models = {
"CODEBRIM-ViT": "chanwooong/codebrim-vit-base",
"Concrete-Defect-ResNet": "nlp-waseda/concrete-defect-resnet",
"Bridge-Damage-ViT": "microsoft/bridge-damage-vit-base"
}
self.loaded_models = {}
self.loaded_processors = {}
@st.cache_resource
def load_model(self, model_name):
"""Load specific model and processor"""
try:
if "vit" in model_name.lower():
model = ViTForImageClassification.from_pretrained(self.models[model_name])
else:
model = ResNetForImageClassification.from_pretrained(self.models[model_name])
processor = AutoImageProcessor.from_pretrained(self.models[model_name])
return model, processor
except Exception as e:
st.error(f"Error loading {model_name}: {str(e)}")
return None, None
def analyze_with_all_models(self, image):
"""Run analysis with all available models"""
results = {}
for model_name in self.models.keys():
if model_name not in self.loaded_models:
self.loaded_models[model_name], self.loaded_processors[model_name] = self.load_model(model_name)
if self.loaded_models[model_name] is not None:
try:
inputs = self.loaded_processors[model_name](images=image, return_tensors="pt")
outputs = self.loaded_models[model_name](**inputs)
probs = torch.nn.functional.softmax(outputs.logits, dim=1)[0]
results[model_name] = probs
except Exception as e:
st.error(f"Error analyzing with {model_name}: {str(e)}")
return results
class EnhancedRAGSystem:
"""Enhanced RAG system with comprehensive construction knowledge"""
def __init__(self):
self.knowledge_sources = {
"ACI_318": "concrete_design_requirements.json",
"ASTM": "testing_standards.json",
"repair_guidelines": "repair_methods.json",
"case_studies": "defect_cases.json"
}
self.embeddings = None
self.vectorstore = None
self.qa_chain = None
def load_knowledge_base(self):
"""Load and combine multiple knowledge sources"""
combined_knowledge = []
for source, filename in self.knowledge_sources.items():
try:
with open(f"knowledge_base/{filename}", 'r') as f:
knowledge = json.load(f)
for item in knowledge:
item['source'] = source
combined_knowledge.extend(knowledge)
except Exception as e:
st.warning(f"Could not load {source}: {str(e)}")
return combined_knowledge
def init_rag(self):
"""Initialize enhanced RAG system"""
try:
self.embeddings = HuggingFaceEmbeddings(
model_name="sentence-transformers/all-mpnet-base-v2"
)
knowledge_base = self.load_knowledge_base()
texts = [
f"{item['defect_type']} ({item['source']})\n" +
f"Description: {item['description']}\n" +
f"Repair: {item['repair_methods']}\n" +
f"Standards: {item['applicable_standards']}\n" +
f"Cases: {item['related_cases']}"
for item in knowledge_base
]
self.vectorstore = FAISS.from_texts(texts, self.embeddings)
self.qa_chain = RetrievalQA.from_chain_type(
llm=HuggingFacePipeline.from_model_id(
model_id="google/flan-t5-large",
task="text2text-generation",
model_kwargs={"temperature": 0.7}
),
chain_type="stuff",
retriever=self.vectorstore.as_retriever(
search_kwargs={"k": 5}
)
)
return True
except Exception as e:
st.error(f"Error initializing RAG system: {str(e)}")
return False
class ConstructionDefectAnalyzer:
"""Main application class"""
def __init__(self):
self.multi_model = MultiModelAnalyzer()
self.rag_system = EnhancedRAGSystem()
self.defect_measurement = DefectMeasurement()
def analyze_multiple_images(self, images):
"""Analyze multiple images in parallel"""
results = []
with ThreadPoolExecutor() as executor:
futures = []
for img in images:
future = executor.submit(self.analyze_single_image, img)
futures.append(future)
for future in futures:
result = future.result()
results.append(result)
return results
def analyze_single_image(self, image):
"""Analyze a single image with all features"""
model_results = self.multi_model.analyze_with_all_models(image)
measurements = {}
recommendations = {}
# Get measurements for detected defects
for model_name, predictions in model_results.items():
for idx, prob in enumerate(predictions):
if prob > 0.15: # Confidence threshold
defect_type = self.get_defect_type(model_name, idx)
measurements[defect_type] = self.defect_measurement.measure_defect(image, defect_type)
# Get RAG recommendations
if self.rag_system.qa_chain:
query = self.generate_rag_query(defect_type, measurements.get(defect_type))
recommendations[defect_type] = self.rag_system.qa_chain.run(query)
return {
"model_results": model_results,
"measurements": measurements,
"recommendations": recommendations
}
@staticmethod
def generate_rag_query(defect_type, measurement):
"""Generate detailed query for RAG system"""
query = f"What are the recommended repairs, safety measures, and applicable standards for {defect_type}"
if measurement:
if "length" in measurement:
query += f" with length {measurement['length']} {measurement['unit']}"
elif "area" in measurement:
query += f" with affected area {measurement['area']} {measurement['unit']}"
return query + "?"
def main():
st.set_page_config(page_title="Advanced Construction Defect Analyzer", layout="wide")
analyzer = ConstructionDefectAnalyzer()
st.title("🏗️ Advanced Construction Defect Analyzer")
# Multiple image upload
uploaded_files = st.file_uploader(
"Upload construction images for analysis",
type=['jpg', 'jpeg', 'png'],
accept_multiple_files=True
)
if uploaded_files:
images = [Image.open(file).convert('RGB') for file in uploaded_files]
with st.spinner("Analyzing images..."):
results = analyzer.analyze_multiple_images(images)
for idx, (image, result) in enumerate(zip(images, results)):
st.markdown(f"### Analysis Results - Image {idx + 1}")
col1, col2 = st.columns([1, 2])
with col1:
st.image(image, caption=f"Image {idx + 1}", use_column_width=True)
with col2:
# Display model comparison
st.markdown("#### Model Predictions")
for model_name, predictions in result['model_results'].items():
st.markdown(f"**{model_name}:**")
for i, prob in enumerate(predictions):
if prob > 0.15:
defect_type = analyzer.get_defect_type(model_name, i)
st.progress(float(prob))
st.markdown(f"{defect_type}: {float(prob)*100:.1f}%")
# Display measurements
if defect_type in result['measurements']:
st.markdown("**Measurements:**")
st.json(result['measurements'][defect_type])
# Display recommendations
if defect_type in result['recommendations']:
with st.expander("📋 Detailed Analysis"):
st.markdown(result['recommendations'][defect_type])
if __name__ == "__main__":
main()