Update app.py
Browse files
app.py
CHANGED
@@ -0,0 +1,90 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import torch
|
3 |
+
from transformers import ViTForImageClassification, ViTImageProcessor
|
4 |
+
from PIL import Image
|
5 |
+
import numpy as np
|
6 |
+
from langchain.vectorstores import FAISS
|
7 |
+
from langchain.embeddings import HuggingFaceEmbeddings
|
8 |
+
from langchain.document_loaders import TextLoader
|
9 |
+
from langchain.text_splitter import CharacterTextSplitter
|
10 |
+
import io
|
11 |
+
import json
|
12 |
+
|
13 |
+
# Load pre-trained model and processor
|
14 |
+
model_name = "google/vit-base-patch16-224-in21k"
|
15 |
+
processor = ViTImageProcessor.from_pretrained(model_name)
|
16 |
+
model = ViTForImageClassification.from_pretrained(model_name)
|
17 |
+
|
18 |
+
# Custom class labels
|
19 |
+
damage_types = [
|
20 |
+
"spalling",
|
21 |
+
"reinforcement_corrosion",
|
22 |
+
"flexural_crack",
|
23 |
+
"structural_crack",
|
24 |
+
"dampness",
|
25 |
+
"impact_failure"
|
26 |
+
]
|
27 |
+
|
28 |
+
# Initialize FAISS vector store
|
29 |
+
embeddings = HuggingFaceEmbeddings()
|
30 |
+
knowledge_base = FAISS.load_local("knowledge_base", embeddings)
|
31 |
+
|
32 |
+
def process_image(image):
|
33 |
+
# Preprocess image
|
34 |
+
inputs = processor(images=image, return_tensors="pt")
|
35 |
+
|
36 |
+
# Get model predictions
|
37 |
+
outputs = model(**inputs)
|
38 |
+
probs = torch.nn.functional.softmax(outputs.logits, dim=-1)
|
39 |
+
|
40 |
+
# Get top predictions
|
41 |
+
top_probs, top_indices = torch.topk(probs, len(damage_types))
|
42 |
+
|
43 |
+
return {
|
44 |
+
damage_types[idx]: float(prob)
|
45 |
+
for idx, prob in zip(top_indices[0], top_probs[0])
|
46 |
+
}
|
47 |
+
|
48 |
+
def get_recommendations(damage_type):
|
49 |
+
# Query vector store for recommendations
|
50 |
+
docs = knowledge_base.similarity_search(
|
51 |
+
f"Remedial measures for {damage_type} in building structures",
|
52 |
+
k=3
|
53 |
+
)
|
54 |
+
return [doc.page_content for doc in docs]
|
55 |
+
|
56 |
+
# Streamlit UI
|
57 |
+
st.title("Structural Damage Assessment Tool")
|
58 |
+
|
59 |
+
# File upload
|
60 |
+
uploaded_file = st.file_uploader("Upload structural image", type=["jpg", "jpeg", "png"])
|
61 |
+
|
62 |
+
if uploaded_file:
|
63 |
+
# Display image
|
64 |
+
image = Image.open(uploaded_file)
|
65 |
+
st.image(image, caption="Uploaded Image", use_column_width=True)
|
66 |
+
|
67 |
+
# Process image
|
68 |
+
with st.spinner("Analyzing image..."):
|
69 |
+
predictions = process_image(image)
|
70 |
+
|
71 |
+
# Display results
|
72 |
+
st.subheader("Damage Assessment")
|
73 |
+
for damage_type, probability in predictions.items():
|
74 |
+
st.progress(probability)
|
75 |
+
st.write(f"{damage_type.replace('_', ' ').title()}: {probability:.2%}")
|
76 |
+
|
77 |
+
# Show recommendations
|
78 |
+
if probability > 0.5:
|
79 |
+
st.subheader(f"Recommendations for {damage_type.replace('_', ' ').title()}")
|
80 |
+
recommendations = get_recommendations(damage_type)
|
81 |
+
for i, rec in enumerate(recommendations, 1):
|
82 |
+
st.write(f"{i}. {rec}")
|
83 |
+
|
84 |
+
# Generate report
|
85 |
+
st.download_button(
|
86 |
+
"Download Report",
|
87 |
+
json.dumps(predictions, indent=2),
|
88 |
+
"assessment_report.json",
|
89 |
+
"application/json"
|
90 |
+
)
|