Update app.py
Browse files
app.py
CHANGED
@@ -1,273 +1,325 @@
|
|
|
|
1 |
import streamlit as st
|
2 |
-
from transformers import
|
3 |
-
|
4 |
-
AutoImageProcessor,
|
5 |
-
ViTForImageClassification,
|
6 |
-
ResNetForImageClassification
|
7 |
-
)
|
8 |
import torch
|
9 |
-
import
|
10 |
-
|
11 |
-
import
|
12 |
-
from
|
13 |
-
from langchain.embeddings import HuggingFaceEmbeddings
|
14 |
-
from langchain.chains import RetrievalQA
|
15 |
-
from langchain.llms import HuggingFacePipeline
|
16 |
-
import json
|
17 |
-
import os
|
18 |
-
from concurrent.futures import ThreadPoolExecutor
|
19 |
-
import pandas as pd
|
20 |
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
53 |
return None
|
54 |
|
55 |
-
|
56 |
-
"""
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
model = ViTForImageClassification.from_pretrained(self.models[model_name])
|
73 |
-
else:
|
74 |
-
model = ResNetForImageClassification.from_pretrained(self.models[model_name])
|
75 |
-
processor = AutoImageProcessor.from_pretrained(self.models[model_name])
|
76 |
-
return model, processor
|
77 |
-
except Exception as e:
|
78 |
-
st.error(f"Error loading {model_name}: {str(e)}")
|
79 |
-
return None, None
|
80 |
-
|
81 |
-
def analyze_with_all_models(self, image):
|
82 |
-
"""Run analysis with all available models"""
|
83 |
-
results = {}
|
84 |
-
for model_name in self.models.keys():
|
85 |
-
if model_name not in self.loaded_models:
|
86 |
-
self.loaded_models[model_name], self.loaded_processors[model_name] = self.load_model(model_name)
|
87 |
-
|
88 |
-
if self.loaded_models[model_name] is not None:
|
89 |
-
try:
|
90 |
-
inputs = self.loaded_processors[model_name](images=image, return_tensors="pt")
|
91 |
-
outputs = self.loaded_models[model_name](**inputs)
|
92 |
-
probs = torch.nn.functional.softmax(outputs.logits, dim=1)[0]
|
93 |
-
results[model_name] = probs
|
94 |
-
except Exception as e:
|
95 |
-
st.error(f"Error analyzing with {model_name}: {str(e)}")
|
96 |
-
|
97 |
-
return results
|
98 |
|
99 |
-
|
100 |
-
"""
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
112 |
|
113 |
-
|
114 |
-
"""Load and combine multiple knowledge sources"""
|
115 |
-
combined_knowledge = []
|
116 |
-
for source, filename in self.knowledge_sources.items():
|
117 |
-
try:
|
118 |
-
with open(f"knowledge_base/{filename}", 'r') as f:
|
119 |
-
knowledge = json.load(f)
|
120 |
-
for item in knowledge:
|
121 |
-
item['source'] = source
|
122 |
-
combined_knowledge.extend(knowledge)
|
123 |
-
except Exception as e:
|
124 |
-
st.warning(f"Could not load {source}: {str(e)}")
|
125 |
|
126 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
127 |
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
)
|
134 |
-
|
135 |
-
knowledge_base = self.load_knowledge_base()
|
136 |
-
texts = [
|
137 |
-
f"{item['defect_type']} ({item['source']})\n" +
|
138 |
-
f"Description: {item['description']}\n" +
|
139 |
-
f"Repair: {item['repair_methods']}\n" +
|
140 |
-
f"Standards: {item['applicable_standards']}\n" +
|
141 |
-
f"Cases: {item['related_cases']}"
|
142 |
-
for item in knowledge_base
|
143 |
-
]
|
144 |
-
|
145 |
-
self.vectorstore = FAISS.from_texts(texts, self.embeddings)
|
146 |
-
|
147 |
-
self.qa_chain = RetrievalQA.from_chain_type(
|
148 |
-
llm=HuggingFacePipeline.from_model_id(
|
149 |
-
model_id="google/flan-t5-large",
|
150 |
-
task="text2text-generation",
|
151 |
-
model_kwargs={"temperature": 0.7}
|
152 |
-
),
|
153 |
-
chain_type="stuff",
|
154 |
-
retriever=self.vectorstore.as_retriever(
|
155 |
-
search_kwargs={"k": 5}
|
156 |
-
)
|
157 |
)
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
|
|
|
|
|
|
|
|
163 |
|
164 |
-
|
165 |
-
"""
|
|
|
|
|
166 |
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
results = []
|
175 |
-
with ThreadPoolExecutor() as executor:
|
176 |
-
futures = []
|
177 |
-
for img in images:
|
178 |
-
future = executor.submit(self.analyze_single_image, img)
|
179 |
-
futures.append(future)
|
180 |
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
210 |
|
211 |
-
|
212 |
-
|
213 |
-
"""Generate detailed query for RAG system"""
|
214 |
-
query = f"What are the recommended repairs, safety measures, and applicable standards for {defect_type}"
|
215 |
-
if measurement:
|
216 |
-
if "length" in measurement:
|
217 |
-
query += f" with length {measurement['length']} {measurement['unit']}"
|
218 |
-
elif "area" in measurement:
|
219 |
-
query += f" with affected area {measurement['area']} {measurement['unit']}"
|
220 |
-
return query + "?"
|
221 |
|
222 |
def main():
|
223 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
224 |
|
225 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
226 |
|
227 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
228 |
|
229 |
-
|
230 |
-
|
231 |
-
|
|
|
|
|
232 |
type=['jpg', 'jpeg', 'png'],
|
233 |
-
|
234 |
)
|
235 |
-
|
236 |
-
if
|
237 |
-
|
238 |
-
|
239 |
-
|
240 |
-
|
241 |
-
|
242 |
-
for idx, (image, result) in enumerate(zip(images, results)):
|
243 |
-
st.markdown(f"### Analysis Results - Image {idx + 1}")
|
244 |
-
|
245 |
-
col1, col2 = st.columns([1, 2])
|
246 |
|
247 |
-
|
248 |
-
|
|
|
249 |
|
250 |
-
|
251 |
-
|
252 |
-
|
253 |
-
|
254 |
-
|
255 |
-
|
256 |
-
|
257 |
-
|
258 |
-
|
259 |
-
|
260 |
-
|
261 |
-
|
262 |
-
|
263 |
-
|
264 |
-
|
265 |
-
|
266 |
-
|
267 |
-
|
268 |
-
|
269 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
270 |
|
271 |
if __name__ == "__main__":
|
272 |
main()
|
273 |
-
|
|
|
1 |
+
```python
|
2 |
import streamlit as st
|
3 |
+
from transformers import ViTForImageClassification, ViTImageProcessor
|
4 |
+
from PIL import Image
|
|
|
|
|
|
|
|
|
5 |
import torch
|
6 |
+
import time
|
7 |
+
import gc
|
8 |
+
from knowledge_base import KNOWLEDGE_BASE, DAMAGE_TYPES
|
9 |
+
from rag_utils import RAGSystem
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
|
11 |
+
# Constants
|
12 |
+
MAX_FILE_SIZE = 5 * 1024 * 1024 # 5MB
|
13 |
+
MAX_IMAGE_SIZE = 1024 # Maximum dimension for images
|
14 |
+
|
15 |
+
# Cache the model and RAG system globally
|
16 |
+
MODEL = None
|
17 |
+
PROCESSOR = None
|
18 |
+
RAG_SYSTEM = None
|
19 |
+
|
20 |
+
def cleanup_memory():
|
21 |
+
"""Clean up memory and GPU cache"""
|
22 |
+
gc.collect()
|
23 |
+
if torch.cuda.is_available():
|
24 |
+
torch.cuda.empty_cache()
|
25 |
+
|
26 |
+
def init_session_state():
|
27 |
+
"""Initialize session state variables"""
|
28 |
+
if 'history' not in st.session_state:
|
29 |
+
st.session_state.history = []
|
30 |
+
if 'dark_mode' not in st.session_state:
|
31 |
+
st.session_state.dark_mode = False
|
32 |
+
|
33 |
+
@st.cache_resource(show_spinner="Loading AI model...")
|
34 |
+
def load_model():
|
35 |
+
"""Load and cache the model and processor"""
|
36 |
+
try:
|
37 |
+
model_name = "google/vit-base-patch16-224"
|
38 |
+
model = ViTForImageClassification.from_pretrained(
|
39 |
+
model_name,
|
40 |
+
num_labels=len(DAMAGE_TYPES),
|
41 |
+
ignore_mismatched_sizes=True,
|
42 |
+
device_map="auto"
|
43 |
+
)
|
44 |
+
processor = ViTImageProcessor.from_pretrained(model_name)
|
45 |
+
return model, processor
|
46 |
+
except Exception as e:
|
47 |
+
st.error(f"Error loading model: {str(e)}")
|
48 |
+
return None, None
|
49 |
+
|
50 |
+
def init_rag_system():
|
51 |
+
"""Initialize the RAG system with knowledge base"""
|
52 |
+
global RAG_SYSTEM
|
53 |
+
if RAG_SYSTEM is None:
|
54 |
+
RAG_SYSTEM = RAGSystem()
|
55 |
+
RAG_SYSTEM.initialize_knowledge_base(KNOWLEDGE_BASE)
|
56 |
+
|
57 |
+
def validate_image(image):
|
58 |
+
"""Validate image size and format"""
|
59 |
+
if image.size[0] * image.size[1] > 1024 * 1024:
|
60 |
+
st.warning("Large image detected. The image will be resized for better performance.")
|
61 |
+
if image.format not in ['JPEG', 'PNG']:
|
62 |
+
st.warning("Image format not optimal. Consider using JPEG or PNG for better performance.")
|
63 |
+
|
64 |
+
def preprocess_image(uploaded_file):
|
65 |
+
"""Preprocess and validate uploaded image"""
|
66 |
+
try:
|
67 |
+
image = Image.open(uploaded_file)
|
68 |
+
# Resize if image is too large
|
69 |
+
if max(image.size) > MAX_IMAGE_SIZE:
|
70 |
+
ratio = MAX_IMAGE_SIZE / max(image.size)
|
71 |
+
new_size = tuple([int(dim * ratio) for dim in image.size])
|
72 |
+
image = image.resize(new_size, Image.Resampling.LANCZOS)
|
73 |
+
return image
|
74 |
+
except Exception as e:
|
75 |
+
st.error(f"Error processing image: {str(e)}")
|
76 |
return None
|
77 |
|
78 |
+
def analyze_damage(image, model, processor):
|
79 |
+
"""Analyze structural damage in the image"""
|
80 |
+
try:
|
81 |
+
with torch.no_grad():
|
82 |
+
image = image.convert('RGB')
|
83 |
+
inputs = processor(images=image, return_tensors="pt")
|
84 |
+
outputs = model(**inputs)
|
85 |
+
probs = torch.nn.functional.softmax(outputs.logits, dim=1)[0]
|
86 |
+
cleanup_memory()
|
87 |
+
return probs
|
88 |
+
except RuntimeError as e:
|
89 |
+
if "out of memory" in str(e):
|
90 |
+
cleanup_memory()
|
91 |
+
st.error("Out of memory. Please try with a smaller image.")
|
92 |
+
else:
|
93 |
+
st.error(f"Error analyzing image: {str(e)}")
|
94 |
+
return None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
95 |
|
96 |
+
def get_custom_css():
|
97 |
+
"""Return custom CSS styles"""
|
98 |
+
return """
|
99 |
+
<style>
|
100 |
+
.main {
|
101 |
+
padding: 2rem;
|
102 |
+
}
|
103 |
+
.stProgress > div > div > div > div {
|
104 |
+
background-image: linear-gradient(to right, var(--progress-color, #ff6b6b), var(--progress-color-end, #f06595));
|
105 |
+
}
|
106 |
+
.damage-card {
|
107 |
+
padding: 1.5rem;
|
108 |
+
border-radius: 0.5rem;
|
109 |
+
background: var(--card-bg, #f8f9fa);
|
110 |
+
margin-bottom: 1rem;
|
111 |
+
border: 1px solid var(--border-color, #dee2e6);
|
112 |
+
box-shadow: 0 2px 4px rgba(0,0,0,0.1);
|
113 |
+
}
|
114 |
+
.damage-header {
|
115 |
+
font-size: 1.25rem;
|
116 |
+
font-weight: bold;
|
117 |
+
margin-bottom: 1rem;
|
118 |
+
color: var(--text-color, #212529);
|
119 |
+
}
|
120 |
+
.dark-mode {
|
121 |
+
background-color: #1a1a1a;
|
122 |
+
color: #ffffff;
|
123 |
+
}
|
124 |
+
.dark-mode .damage-card {
|
125 |
+
background: #2d2d2d;
|
126 |
+
border-color: #404040;
|
127 |
+
}
|
128 |
+
</style>
|
129 |
+
"""
|
130 |
+
|
131 |
+
def display_header():
|
132 |
+
"""Display application header"""
|
133 |
+
st.markdown(
|
134 |
+
"""
|
135 |
+
<div style='text-align: center; padding: 1rem;'>
|
136 |
+
<h1>ποΈ Structural Damage Analyzer Pro</h1>
|
137 |
+
<p style='font-size: 1.2rem;'>Advanced AI-powered structural damage assessment tool</p>
|
138 |
+
</div>
|
139 |
+
""",
|
140 |
+
unsafe_allow_html=True
|
141 |
+
)
|
142 |
+
|
143 |
+
def display_enhanced_analysis(damage_type, confidence):
|
144 |
+
"""Display enhanced analysis from RAG system"""
|
145 |
+
try:
|
146 |
+
enhanced_info = RAG_SYSTEM.get_enhanced_analysis(damage_type, confidence)
|
147 |
|
148 |
+
st.markdown("### π Enhanced Analysis")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
149 |
|
150 |
+
with st.expander("π Technical Details", expanded=True):
|
151 |
+
for detail in enhanced_info["technical_details"]:
|
152 |
+
st.markdown(detail)
|
153 |
+
|
154 |
+
with st.expander("β οΈ Safety Considerations"):
|
155 |
+
for safety in enhanced_info["safety_considerations"]:
|
156 |
+
st.warning(safety)
|
157 |
+
|
158 |
+
with st.expander("π· Expert Recommendations"):
|
159 |
+
for rec in enhanced_info["expert_recommendations"]:
|
160 |
+
st.info(rec)
|
161 |
+
|
162 |
+
custom_query = st.text_input(
|
163 |
+
"Ask specific questions about this damage type:",
|
164 |
+
placeholder="E.g., What are the long-term implications of this damage?"
|
165 |
+
)
|
166 |
|
167 |
+
if custom_query:
|
168 |
+
custom_results = RAG_SYSTEM.get_enhanced_analysis(
|
169 |
+
damage_type,
|
170 |
+
confidence,
|
171 |
+
custom_query=custom_query
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
172 |
)
|
173 |
+
st.markdown("### π‘ Custom Query Results")
|
174 |
+
for category, results in custom_results.items():
|
175 |
+
if results:
|
176 |
+
st.markdown(f"**{category.replace('_', ' ').title()}:**")
|
177 |
+
for result in results:
|
178 |
+
st.markdown(result)
|
179 |
+
|
180 |
+
except Exception as e:
|
181 |
+
st.error(f"Error generating enhanced analysis: {str(e)}")
|
182 |
|
183 |
+
def display_analysis_results(predictions, analysis_time):
|
184 |
+
"""Display analysis results with damage details"""
|
185 |
+
st.markdown("### π Analysis Results")
|
186 |
+
st.markdown(f"*Analysis completed in {analysis_time:.2f} seconds*")
|
187 |
|
188 |
+
detected = False
|
189 |
+
for idx, prob in enumerate(predictions):
|
190 |
+
confidence = float(prob) * 100
|
191 |
+
if confidence > 15:
|
192 |
+
detected = True
|
193 |
+
damage_type = DAMAGE_TYPES[idx]['name']
|
194 |
+
cases = KNOWLEDGE_BASE[damage_type]
|
|
|
|
|
|
|
|
|
|
|
|
|
195 |
|
196 |
+
with st.expander(f"{damage_type.replace('_', ' ').title()} - {confidence:.1f}%", expanded=True):
|
197 |
+
st.markdown(
|
198 |
+
f"""
|
199 |
+
<style>
|
200 |
+
.stProgress > div > div > div > div {{
|
201 |
+
background-color: {DAMAGE_TYPES[idx]['color']} !important;
|
202 |
+
}}
|
203 |
+
</style>
|
204 |
+
""",
|
205 |
+
unsafe_allow_html=True
|
206 |
+
)
|
207 |
+
st.progress(confidence / 100)
|
208 |
+
|
209 |
+
tabs = st.tabs(["π Details", "π§ Repairs", "β οΈ Actions"])
|
210 |
+
|
211 |
+
with tabs[0]:
|
212 |
+
for case in cases:
|
213 |
+
st.markdown(f"""
|
214 |
+
- **Severity:** {case['severity']}
|
215 |
+
- **Description:** {case['description']}
|
216 |
+
- **Location:** {case['location']}
|
217 |
+
- **Required Expertise:** {case['required_expertise']}
|
218 |
+
""")
|
219 |
+
|
220 |
+
with tabs[1]:
|
221 |
+
for step in cases[0]['repair_method']:
|
222 |
+
st.markdown(f"β {step}")
|
223 |
+
st.info(f"**Estimated Cost:** {cases[0]['estimated_cost']}")
|
224 |
+
st.info(f"**Timeframe:** {cases[0]['timeframe']}")
|
225 |
+
|
226 |
+
with tabs[2]:
|
227 |
+
st.warning("**Immediate Actions Required:**")
|
228 |
+
st.markdown(cases[0]['immediate_action'])
|
229 |
+
st.success("**Prevention Measures:**")
|
230 |
+
st.markdown(cases[0]['prevention'])
|
231 |
+
|
232 |
+
# Display enhanced analysis
|
233 |
+
display_enhanced_analysis(damage_type, confidence)
|
234 |
|
235 |
+
if not detected:
|
236 |
+
st.info("No significant structural damage detected. Regular maintenance recommended.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
237 |
|
238 |
def main():
|
239 |
+
"""Main application function"""
|
240 |
+
init_session_state()
|
241 |
+
st.set_page_config(
|
242 |
+
page_title="Structural Damage Analyzer Pro",
|
243 |
+
page_icon="ποΈ",
|
244 |
+
layout="wide",
|
245 |
+
initial_sidebar_state="expanded"
|
246 |
+
)
|
247 |
+
|
248 |
+
st.markdown(get_custom_css(), unsafe_allow_html=True)
|
249 |
|
250 |
+
# Sidebar
|
251 |
+
with st.sidebar:
|
252 |
+
st.markdown("### βοΈ Settings")
|
253 |
+
st.session_state.dark_mode = st.toggle("Dark Mode", st.session_state.dark_mode)
|
254 |
+
st.markdown("### π Analysis History")
|
255 |
+
if st.session_state.history:
|
256 |
+
for item in st.session_state.history[-5:]:
|
257 |
+
st.markdown(f"- {item}")
|
258 |
|
259 |
+
display_header()
|
260 |
+
|
261 |
+
# Load model and initialize RAG system
|
262 |
+
global MODEL, PROCESSOR
|
263 |
+
if MODEL is None or PROCESSOR is None:
|
264 |
+
with st.spinner("Loading AI model..."):
|
265 |
+
MODEL, PROCESSOR = load_model()
|
266 |
+
if MODEL is None:
|
267 |
+
st.error("Failed to load model. Please refresh the page.")
|
268 |
+
return
|
269 |
|
270 |
+
init_rag_system()
|
271 |
+
|
272 |
+
# File upload
|
273 |
+
uploaded_file = st.file_uploader(
|
274 |
+
"Drag and drop or click to upload an image",
|
275 |
type=['jpg', 'jpeg', 'png'],
|
276 |
+
help="Supported formats: JPG, JPEG, PNG"
|
277 |
)
|
278 |
+
|
279 |
+
if uploaded_file:
|
280 |
+
try:
|
281 |
+
if uploaded_file.size > MAX_FILE_SIZE:
|
282 |
+
st.error("File size too large. Please upload an image smaller than 5MB.")
|
283 |
+
return
|
|
|
|
|
|
|
|
|
|
|
284 |
|
285 |
+
image = preprocess_image(uploaded_file)
|
286 |
+
if image is None:
|
287 |
+
return
|
288 |
|
289 |
+
validate_image(image)
|
290 |
+
|
291 |
+
col1, col2 = st.columns([1, 1])
|
292 |
+
|
293 |
+
with col1:
|
294 |
+
st.image(image, caption="Uploaded Structure", use_container_width=True)
|
295 |
+
|
296 |
+
with col2:
|
297 |
+
with st.spinner("π Analyzing damage..."):
|
298 |
+
start_time = time.time()
|
299 |
+
predictions = analyze_damage(image, MODEL, PROCESSOR)
|
300 |
+
analysis_time = time.time() - start_time
|
301 |
+
|
302 |
+
if predictions is not None:
|
303 |
+
display_analysis_results(predictions, analysis_time)
|
304 |
+
st.session_state.history.append(f"Analyzed image: {uploaded_file.name}")
|
305 |
+
|
306 |
+
except Exception as e:
|
307 |
+
cleanup_memory()
|
308 |
+
st.error(f"Error processing image: {str(e)}")
|
309 |
+
st.info("Please try uploading a different image.")
|
310 |
+
|
311 |
+
# Footer
|
312 |
+
st.markdown("---")
|
313 |
+
st.markdown(
|
314 |
+
"""
|
315 |
+
<div style='text-align: center'>
|
316 |
+
<p>ποΈ Structural Damage Analyzer Pro | Built with Streamlit & Transformers</p>
|
317 |
+
<p style='font-size: 0.8rem;'>For professional use only. Always consult with a structural engineer.</p>
|
318 |
+
</div>
|
319 |
+
""",
|
320 |
+
unsafe_allow_html=True
|
321 |
+
)
|
322 |
|
323 |
if __name__ == "__main__":
|
324 |
main()
|
325 |
+
```
|