Update app.py
Browse files
app.py
CHANGED
@@ -1,90 +1,59 @@
|
|
1 |
import streamlit as st
|
2 |
-
import
|
3 |
-
from transformers import ViTForImageClassification, ViTImageProcessor
|
4 |
from PIL import Image
|
|
|
5 |
import numpy as np
|
6 |
-
from langchain.vectorstores import FAISS
|
7 |
-
from langchain.embeddings import HuggingFaceEmbeddings
|
8 |
-
from langchain.document_loaders import TextLoader
|
9 |
-
from langchain.text_splitter import CharacterTextSplitter
|
10 |
-
import io
|
11 |
-
import json
|
12 |
|
13 |
-
#
|
14 |
-
|
15 |
-
processor = ViTImageProcessor.from_pretrained(model_name)
|
16 |
-
model = ViTForImageClassification.from_pretrained(model_name)
|
17 |
|
18 |
-
#
|
19 |
-
|
20 |
-
"spalling",
|
21 |
-
"reinforcement_corrosion",
|
22 |
-
"flexural_crack",
|
23 |
-
"structural_crack",
|
24 |
-
"dampness",
|
25 |
-
"impact_failure"
|
26 |
-
]
|
27 |
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
|
32 |
-
def
|
33 |
-
|
34 |
-
inputs = processor(images=image, return_tensors="pt")
|
35 |
|
36 |
-
#
|
37 |
-
|
38 |
-
|
39 |
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
damage_types[idx]: float(prob)
|
45 |
-
for idx, prob in zip(top_indices[0], top_probs[0])
|
46 |
-
}
|
47 |
-
|
48 |
-
def get_recommendations(damage_type):
|
49 |
-
# Query vector store for recommendations
|
50 |
-
docs = knowledge_base.similarity_search(
|
51 |
-
f"Remedial measures for {damage_type} in building structures",
|
52 |
-
k=3
|
53 |
-
)
|
54 |
-
return [doc.page_content for doc in docs]
|
55 |
-
|
56 |
-
# Streamlit UI
|
57 |
-
st.title("Structural Damage Assessment Tool")
|
58 |
-
|
59 |
-
# File upload
|
60 |
-
uploaded_file = st.file_uploader("Upload structural image", type=["jpg", "jpeg", "png"])
|
61 |
-
|
62 |
-
if uploaded_file:
|
63 |
-
# Display image
|
64 |
-
image = Image.open(uploaded_file)
|
65 |
-
st.image(image, caption="Uploaded Image", use_column_width=True)
|
66 |
-
|
67 |
-
# Process image
|
68 |
-
with st.spinner("Analyzing image..."):
|
69 |
-
predictions = process_image(image)
|
70 |
-
|
71 |
-
# Display results
|
72 |
-
st.subheader("Damage Assessment")
|
73 |
-
for damage_type, probability in predictions.items():
|
74 |
-
st.progress(probability)
|
75 |
-
st.write(f"{damage_type.replace('_', ' ').title()}: {probability:.2%}")
|
76 |
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import streamlit as st
|
2 |
+
from transformers import pipeline
|
|
|
3 |
from PIL import Image
|
4 |
+
import torch
|
5 |
import numpy as np
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
|
7 |
+
# Initialize classifier
|
8 |
+
classifier = pipeline("image-classification", model="microsoft/resnet-50")
|
|
|
|
|
9 |
|
10 |
+
# Page config
|
11 |
+
st.set_page_config(page_title="Structural Damage Assessment", layout="wide")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
|
13 |
+
def analyze_damage(image):
|
14 |
+
predictions = classifier(image)
|
15 |
+
return predictions
|
16 |
|
17 |
+
def main():
|
18 |
+
st.title("Structural Damage Assessment Tool")
|
|
|
19 |
|
20 |
+
# Sidebar
|
21 |
+
st.sidebar.header("Upload Options")
|
22 |
+
uploaded_file = st.sidebar.file_uploader("Choose an image", type=['png', 'jpg', 'jpeg'])
|
23 |
|
24 |
+
if uploaded_file:
|
25 |
+
# Display image
|
26 |
+
image = Image.open(uploaded_file)
|
27 |
+
col1, col2 = st.columns(2)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
|
29 |
+
with col1:
|
30 |
+
st.image(image, caption="Uploaded Structure", use_column_width=True)
|
31 |
+
|
32 |
+
# Analyze image
|
33 |
+
with col2:
|
34 |
+
st.header("Analysis Results")
|
35 |
+
with st.spinner("Analyzing..."):
|
36 |
+
results = analyze_damage(image)
|
37 |
+
|
38 |
+
for result in results:
|
39 |
+
score = result['score'] * 100
|
40 |
+
st.progress(int(score))
|
41 |
+
st.write(f"{result['label']}: {score:.2f}%")
|
42 |
+
|
43 |
+
# Recommendations
|
44 |
+
st.header("Recommendations")
|
45 |
+
damages = {
|
46 |
+
'Spalling': ['Repair exposed areas', 'Apply protective coating'],
|
47 |
+
'Cracks': ['Monitor crack width', 'Apply crack sealant'],
|
48 |
+
'Corrosion': ['Remove rust', 'Apply anti-corrosive treatment'],
|
49 |
+
'Dampness': ['Improve drainage', 'Apply waterproofing']
|
50 |
+
}
|
51 |
+
|
52 |
+
for damage, remedies in damages.items():
|
53 |
+
if any(damage.lower() in r['label'].lower() for r in results):
|
54 |
+
st.subheader(f"{damage} Remedial Measures:")
|
55 |
+
for remedy in remedies:
|
56 |
+
st.write(f"- {remedy}")
|
57 |
+
|
58 |
+
if __name__ == "__main__":
|
59 |
+
main()
|