Shakir60 commited on
Commit
d774ee6
·
verified ·
1 Parent(s): 28c349c

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +94 -210
app.py CHANGED
@@ -4,26 +4,10 @@ from PIL import Image
4
  import torch
5
  import time
6
  import gc
7
- from knowledge_base import KNOWLEDGE_BASE, DAMAGE_TYPES
8
- from rag_utils import RAGSystem
9
- import os
10
 
11
  # Constants
12
  MAX_FILE_SIZE = 5 * 1024 * 1024 # 5MB
13
  MAX_IMAGE_SIZE = 1024 # Maximum dimension for images
14
- MODEL_NAME = "google/vit-base-patch16-224"
15
- CACHE_DIR = "/tmp/model_cache" # HF Spaces compatible cache directory
16
-
17
- # Ensure cache directory exists
18
- os.makedirs(CACHE_DIR, exist_ok=True)
19
-
20
- # Initialize session state for caching
21
- if 'model' not in st.session_state:
22
- st.session_state.model = None
23
- if 'processor' not in st.session_state:
24
- st.session_state.processor = None
25
- if 'rag_system' not in st.session_state:
26
- st.session_state.rag_system = None
27
 
28
  def cleanup_memory():
29
  """Clean up memory and GPU cache"""
@@ -31,243 +15,143 @@ def cleanup_memory():
31
  if torch.cuda.is_available():
32
  torch.cuda.empty_cache()
33
 
 
 
 
 
 
 
 
34
  @st.cache_resource(show_spinner="Loading AI model...")
35
  def load_model():
36
- """Load and cache the model and processor with error handling"""
37
  try:
38
- # Initialize processor with cache directory
39
- processor = ViTImageProcessor.from_pretrained(
40
- MODEL_NAME,
41
- cache_dir=CACHE_DIR,
42
- local_files_only=False
43
- )
44
-
45
- # Determine device - prefer CPU on Hugging Face Spaces
46
- device = "cpu" # Default to CPU for stability
47
-
48
- # Load model with specific configuration
49
  model = ViTForImageClassification.from_pretrained(
50
- MODEL_NAME,
51
  num_labels=len(DAMAGE_TYPES),
52
  ignore_mismatched_sizes=True,
53
- cache_dir=CACHE_DIR,
54
- local_files_only=False
55
  ).to(device)
56
-
57
- model.eval() # Set to evaluation mode
58
  return model, processor
59
  except Exception as e:
60
  st.error(f"Error loading model: {str(e)}")
61
- st.info("Attempting to reload model... Please wait.")
62
- cleanup_memory()
63
  return None, None
64
 
65
- def init_rag_system():
66
- """Initialize RAG system with error handling"""
67
- if st.session_state.rag_system is None:
68
- try:
69
- st.session_state.rag_system = RAGSystem()
70
- st.session_state.rag_system.initialize_knowledge_base(KNOWLEDGE_BASE)
71
- except Exception as e:
72
- st.error(f"Error initializing RAG system: {str(e)}")
73
- st.session_state.rag_system = None
74
 
75
- def process_image(image):
76
- """Process and validate image with enhanced error handling"""
77
  try:
78
- # Convert to RGB if necessary
79
- if image.mode != 'RGB':
80
- image = image.convert('RGB')
81
-
82
- # Resize if needed
83
  if max(image.size) > MAX_IMAGE_SIZE:
84
  ratio = MAX_IMAGE_SIZE / max(image.size)
85
  new_size = tuple([int(dim * ratio) for dim in image.size])
86
  image = image.resize(new_size, Image.Resampling.LANCZOS)
87
-
88
  return image
89
  except Exception as e:
90
  st.error(f"Error processing image: {str(e)}")
91
  return None
92
 
93
  def analyze_damage(image, model, processor):
94
- """Analyze structural damage with enhanced error handling and memory management"""
95
  try:
96
  device = next(model.parameters()).device
97
  with torch.no_grad():
98
- # Process image
99
  inputs = processor(images=image, return_tensors="pt")
100
  inputs = {k: v.to(device) for k, v in inputs.items()}
101
-
102
- # Run inference
103
  outputs = model(**inputs)
104
  probs = torch.nn.functional.softmax(outputs.logits, dim=1)[0]
105
-
106
- # Clean up
107
  cleanup_memory()
108
  return probs.cpu()
109
  except RuntimeError as e:
110
  if "out of memory" in str(e):
111
  cleanup_memory()
112
- st.error("Memory error. Processing with reduced image size...")
113
- # Retry with smaller image
114
- image = image.resize((224, 224), Image.Resampling.LANCZOS)
115
- return analyze_damage(image, model, processor)
116
  else:
117
- st.error(f"Error during analysis: {str(e)}")
118
- return None
119
- except Exception as e:
120
- st.error(f"Unexpected error: {str(e)}")
121
  return None
122
 
123
- def display_analysis_results(predictions, analysis_time):
124
- """Display analysis results with enhanced visualization and error handling"""
125
- try:
126
- st.markdown("### 📊 Analysis Results")
127
- st.markdown(f"*Analysis completed in {analysis_time:.2f} seconds*")
128
-
129
- detected = False
130
- for idx, prob in enumerate(predictions):
131
- confidence = float(prob) * 100
132
- if confidence > 15: # Threshold for displaying results
133
- detected = True
134
- damage_type = DAMAGE_TYPES[idx]['name']
135
- risk_level = DAMAGE_TYPES[idx]['risk']
136
-
137
- # Create expander with color-coded header
138
- with st.expander(
139
- f"🔍 {damage_type.replace('_', ' ').title()} - {confidence:.1f}% ({risk_level})",
140
- expanded=True
141
- ):
142
- # Display confidence bar
143
- st.progress(confidence / 100)
144
-
145
- # Create tabs for organized information
146
- details_tab, repair_tab, action_tab = st.tabs([
147
- "📋 Details", "🔧 Repair Plan", "⚠️ Actions Needed"
148
- ])
149
-
150
- with details_tab:
151
- display_damage_details(damage_type, confidence)
152
-
153
- with repair_tab:
154
- display_repair_plan(damage_type)
155
-
156
- with action_tab:
157
- display_action_items(damage_type)
158
-
159
- # Display enhanced analysis if RAG system is available
160
- if st.session_state.rag_system:
161
- display_enhanced_analysis(damage_type, confidence)
162
-
163
- if not detected:
164
- st.success("No significant structural damage detected. Regular maintenance recommended.")
165
-
166
- except Exception as e:
167
- st.error(f"Error displaying results: {str(e)}")
168
-
169
  def main():
170
- """Main application function with enhanced error handling and UI"""
171
- try:
172
- # Page configuration
173
- st.set_page_config(
174
- page_title="Structural Damage Analyzer Pro",
175
- page_icon="🏗️",
176
- layout="wide",
177
- initial_sidebar_state="expanded"
178
- )
179
-
180
- # Custom CSS
181
- st.markdown(get_custom_css(), unsafe_allow_html=True)
182
-
183
- # Header
184
- display_header()
185
-
186
- # Initialize systems
187
- if st.session_state.model is None or st.session_state.processor is None:
188
- with st.spinner("Initializing AI model..."):
189
- model, processor = load_model()
190
- if model is None:
191
- st.error("Failed to initialize model. Please refresh the page.")
192
- return
193
- st.session_state.model = model
194
- st.session_state.processor = processor
195
-
196
- init_rag_system()
197
-
198
- # File upload section
199
- uploaded_file = st.file_uploader(
200
- "Upload structural image for analysis",
201
- type=['jpg', 'jpeg', 'png'],
202
- help="Maximum file size: 5MB"
203
- )
204
-
205
- if uploaded_file:
206
- process_uploaded_file(uploaded_file)
207
-
208
- # Footer
209
- display_footer()
210
-
211
- except Exception as e:
212
- st.error(f"Application error: {str(e)}")
213
- st.info("Please refresh the page and try again.")
214
- cleanup_memory()
215
 
216
- def process_uploaded_file(uploaded_file):
217
- """Process uploaded file with comprehensive error handling"""
218
- try:
219
- # Validate file size
220
- if uploaded_file.size > MAX_FILE_SIZE:
221
- st.error("File too large. Please upload an image smaller than 5MB.")
222
- return
223
-
224
- # Process image
225
- image = Image.open(uploaded_file)
226
- processed_image = process_image(image)
227
- if processed_image is None:
228
- return
229
-
230
- # Display layout
231
- col1, col2 = st.columns([1, 1])
232
- with col1:
233
- st.image(processed_image, caption="Uploaded Structure", use_column_width=True)
234
-
235
- with col2:
236
- with st.spinner("🔍 Analyzing structural damage..."):
237
- start_time = time.time()
238
- predictions = analyze_damage(
239
- processed_image,
240
- st.session_state.model,
241
- st.session_state.processor
242
- )
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
243
  if predictions is not None:
244
- analysis_time = time.time() - start_time
245
- display_analysis_results(predictions, analysis_time)
246
-
247
- except Exception as e:
248
- st.error(f"Error processing upload: {str(e)}")
249
- cleanup_memory()
 
250
 
251
- def get_custom_css():
252
- """Return custom CSS for enhanced UI"""
253
- return """
254
- <style>
255
- .main {
256
- padding: 1rem;
257
- }
258
- .stProgress > div > div > div > div {
259
- background-image: linear-gradient(to right, #ff6b6b, #f06595);
260
- }
261
- .damage-card {
262
- padding: 1rem;
263
- border-radius: 0.5rem;
264
- background: var(--background-color, #ffffff);
265
- margin-bottom: 1rem;
266
- border: 1px solid var(--border-color, #e0e0e0);
267
- box-shadow: 0 2px 4px rgba(0,0,0,0.1);
268
- }
269
- </style>
270
- """
271
 
272
  if __name__ == "__main__":
273
  main()
 
4
  import torch
5
  import time
6
  import gc
 
 
 
7
 
8
  # Constants
9
  MAX_FILE_SIZE = 5 * 1024 * 1024 # 5MB
10
  MAX_IMAGE_SIZE = 1024 # Maximum dimension for images
 
 
 
 
 
 
 
 
 
 
 
 
 
11
 
12
  def cleanup_memory():
13
  """Clean up memory and GPU cache"""
 
15
  if torch.cuda.is_available():
16
  torch.cuda.empty_cache()
17
 
18
+ def init_session_state():
19
+ """Initialize session state variables"""
20
+ if 'history' not in st.session_state:
21
+ st.session_state.history = []
22
+ if 'dark_mode' not in st.session_state:
23
+ st.session_state.dark_mode = False
24
+
25
  @st.cache_resource(show_spinner="Loading AI model...")
26
  def load_model():
27
+ """Load and cache the model and processor"""
28
  try:
29
+ model_name = "google/vit-base-patch16-224"
30
+ processor = ViTImageProcessor.from_pretrained(model_name)
31
+ device = "cuda" if torch.cuda.is_available() else "cpu"
 
 
 
 
 
 
 
 
32
  model = ViTForImageClassification.from_pretrained(
33
+ model_name,
34
  num_labels=len(DAMAGE_TYPES),
35
  ignore_mismatched_sizes=True,
 
 
36
  ).to(device)
37
+ model.eval()
 
38
  return model, processor
39
  except Exception as e:
40
  st.error(f"Error loading model: {str(e)}")
 
 
41
  return None, None
42
 
43
+ def validate_image(image):
44
+ """Validate image size and format"""
45
+ if image.size[0] * image.size[1] > 1024 * 1024:
46
+ st.warning("Large image detected. The image will be resized for better performance.")
47
+ if image.format not in ['JPEG', 'PNG']:
48
+ st.warning("Image format not optimal. Consider using JPEG or PNG for better performance.")
 
 
 
49
 
50
+ def preprocess_image(uploaded_file):
51
+ """Preprocess and validate uploaded image"""
52
  try:
53
+ image = Image.open(uploaded_file)
 
 
 
 
54
  if max(image.size) > MAX_IMAGE_SIZE:
55
  ratio = MAX_IMAGE_SIZE / max(image.size)
56
  new_size = tuple([int(dim * ratio) for dim in image.size])
57
  image = image.resize(new_size, Image.Resampling.LANCZOS)
 
58
  return image
59
  except Exception as e:
60
  st.error(f"Error processing image: {str(e)}")
61
  return None
62
 
63
  def analyze_damage(image, model, processor):
64
+ """Analyze structural damage in the image"""
65
  try:
66
  device = next(model.parameters()).device
67
  with torch.no_grad():
68
+ image = image.convert('RGB')
69
  inputs = processor(images=image, return_tensors="pt")
70
  inputs = {k: v.to(device) for k, v in inputs.items()}
 
 
71
  outputs = model(**inputs)
72
  probs = torch.nn.functional.softmax(outputs.logits, dim=1)[0]
 
 
73
  cleanup_memory()
74
  return probs.cpu()
75
  except RuntimeError as e:
76
  if "out of memory" in str(e):
77
  cleanup_memory()
78
+ st.error("Out of memory. Please try with a smaller image.")
 
 
 
79
  else:
80
+ st.error(f"Error analyzing image: {str(e)}")
 
 
 
81
  return None
82
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
83
  def main():
84
+ st.set_page_config(
85
+ page_title="Structural Damage Analyzer Pro",
86
+ page_icon="🏗️",
87
+ layout="wide",
88
+ initial_sidebar_state="expanded"
89
+ )
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
90
 
91
+ # Initialize session state
92
+ init_session_state()
93
+
94
+ # Display header
95
+ st.markdown(
96
+ """
97
+ <div style='text-align: center; padding: 1rem;'>
98
+ <h1>🏗️ Structural Damage Analyzer Pro</h1>
99
+ <p style='font-size: 1.2rem;'>Advanced AI-powered structural damage assessment tool</p>
100
+ </div>
101
+ """,
102
+ unsafe_allow_html=True
103
+ )
104
+
105
+ # Load model
106
+ model, processor = load_model()
107
+ if model is None:
108
+ st.error("Failed to load model. Please refresh the page.")
109
+ return
110
+
111
+ # File upload
112
+ uploaded_file = st.file_uploader(
113
+ "Upload an image for analysis",
114
+ type=['jpg', 'jpeg', 'png'],
115
+ help="Supported formats: JPG, JPEG, PNG"
116
+ )
117
+
118
+ if uploaded_file:
119
+ try:
120
+ if uploaded_file.size > MAX_FILE_SIZE:
121
+ st.error("File size too large. Please upload an image smaller than 5MB.")
122
+ return
123
+
124
+ image = preprocess_image(uploaded_file)
125
+ if image is None:
126
+ return
127
+
128
+ validate_image(image)
129
+
130
+ # Display image and analyze
131
+ st.image(image, caption="Uploaded Structure", use_column_width=True)
132
+
133
+ with st.spinner("🔍 Analyzing damage..."):
134
+ predictions = analyze_damage(image, model, processor)
135
  if predictions is not None:
136
+ st.success("Analysis complete!")
137
+ # Add analysis display logic here based on your DAMAGE_TYPES
138
+
139
+ except Exception as e:
140
+ cleanup_memory()
141
+ st.error(f"Error processing image: {str(e)}")
142
+ st.info("Please try uploading a different image.")
143
 
144
+ # Footer
145
+ st.markdown("---")
146
+ st.markdown(
147
+ """
148
+ <div style='text-align: center'>
149
+ <p>🏗️ Structural Damage Analyzer Pro | Built with Streamlit & Transformers</p>
150
+ <p style='font-size: 0.8rem;'>For professional use only. Always consult with a structural engineer.</p>
151
+ </div>
152
+ """,
153
+ unsafe_allow_html=True
154
+ )
 
 
 
 
 
 
 
 
 
155
 
156
  if __name__ == "__main__":
157
  main()