File size: 1,376 Bytes
8300a07
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
import sys, os
sys.path.append(os.getcwd())

from model import M2_TTS, UNetT, DiT, MMDiT

import torch
import thop


''' ~155M '''
# transformer =     UNetT(dim = 768, depth = 20, heads = 12, ff_mult = 4)
# transformer =     UNetT(dim = 768, depth = 20, heads = 12, ff_mult = 4, text_dim = 512, conv_layers = 4)
# transformer =       DiT(dim = 768, depth = 18, heads = 12, ff_mult = 2)
# transformer =       DiT(dim = 768, depth = 18, heads = 12, ff_mult = 2, text_dim = 512, conv_layers = 4)
# transformer =       DiT(dim = 768, depth = 18, heads = 12, ff_mult = 2, text_dim = 512, conv_layers = 4, long_skip_connection = True)
# transformer =     MMDiT(dim = 512, depth = 16, heads = 16, ff_mult = 2)

''' ~335M '''
# FLOPs: 622.1 G, Params: 333.2 M
# transformer =     UNetT(dim = 1024, depth = 24, heads = 16, ff_mult = 4)
# FLOPs: 363.4 G, Params: 335.8 M
transformer =       DiT(dim = 1024, depth = 22, heads = 16, ff_mult = 2, text_dim = 512, conv_layers = 4)


model = M2_TTS(transformer=transformer)
target_sample_rate = 24000
n_mel_channels = 100
hop_length = 256
duration = 20
frame_length = int(duration * target_sample_rate / hop_length)
text_length = 150

flops, params = thop.profile(model, inputs=(torch.randn(1, frame_length, n_mel_channels), torch.zeros(1, text_length, dtype=torch.long)))
print(f"FLOPs: {flops / 1e9} G")
print(f"Params: {params / 1e6} M")