File size: 6,061 Bytes
8300a07
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
import os

import torch
import torch.nn.functional as F
import torchaudio
from einops import rearrange
from vocos import Vocos

from model import CFM, UNetT, DiT, MMDiT
from model.utils import (
    load_checkpoint,
    get_tokenizer, 
    convert_char_to_pinyin, 
    save_spectrogram,
)

device = "cuda" if torch.cuda.is_available() else "mps" if torch.backends.mps.is_available() else "cpu"


# --------------------- Dataset Settings -------------------- #

target_sample_rate = 24000
n_mel_channels = 100
hop_length = 256
target_rms = 0.1

tokenizer = "pinyin"
dataset_name = "Emilia_ZH_EN"


# ---------------------- infer setting ---------------------- #

seed = None  # int | None

exp_name = "F5TTS_Base"  # F5TTS_Base | E2TTS_Base
ckpt_step = 1200000

nfe_step = 32  # 16, 32
cfg_strength = 2.
ode_method = 'euler'  # euler | midpoint
sway_sampling_coef = -1.
speed = 1.

if exp_name == "F5TTS_Base":
    model_cls = DiT
    model_cfg = dict(dim = 1024, depth = 22, heads = 16, ff_mult = 2, text_dim = 512, conv_layers = 4)

elif exp_name == "E2TTS_Base":
    model_cls = UNetT
    model_cfg = dict(dim = 1024, depth = 24, heads = 16, ff_mult = 4)

ckpt_path = f"ckpts/{exp_name}/model_{ckpt_step}.pt"
output_dir = "tests"

# [leverage https://github.com/MahmoudAshraf97/ctc-forced-aligner to get char level alignment]
# pip install git+https://github.com/MahmoudAshraf97/ctc-forced-aligner.git
# [write the origin_text into a file, e.g. tests/test_edit.txt]
# ctc-forced-aligner --audio_path "tests/ref_audio/test_en_1_ref_short.wav" --text_path "tests/test_edit.txt" --language "zho" --romanize --split_size "char"
# [result will be saved at same path of audio file]
# [--language "zho" for Chinese, "eng" for English]
# [if local ckpt, set --alignment_model "../checkpoints/mms-300m-1130-forced-aligner"]

audio_to_edit = "tests/ref_audio/test_en_1_ref_short.wav"
origin_text = "Some call me nature, others call me mother nature."
target_text = "Some call me optimist, others call me realist."
parts_to_edit = [[1.42, 2.44], [4.04, 4.9], ]  # stard_ends of "nature" & "mother nature", in seconds
fix_duration = [1.2, 1, ]  # fix duration for "optimist" & "realist", in seconds

# audio_to_edit = "tests/ref_audio/test_zh_1_ref_short.wav"
# origin_text = "对,这就是我,万人敬仰的太乙真人。"
# target_text = "对,那就是你,万人敬仰的太白金星。"
# parts_to_edit = [[0.84, 1.4], [1.92, 2.4], [4.26, 6.26], ]
# fix_duration = None  # use origin text duration


# -------------------------------------------------#

use_ema = True

if not os.path.exists(output_dir):
    os.makedirs(output_dir)

# Vocoder model
local = False
if local:
    vocos_local_path = "../checkpoints/charactr/vocos-mel-24khz"
    vocos = Vocos.from_hparams(f"{vocos_local_path}/config.yaml")
    state_dict = torch.load(f"{vocos_local_path}/pytorch_model.bin", map_location=device)
    vocos.load_state_dict(state_dict)
    vocos.eval()
else:
    vocos = Vocos.from_pretrained("charactr/vocos-mel-24khz")

# Tokenizer
vocab_char_map, vocab_size = get_tokenizer(dataset_name, tokenizer)

# Model
model = CFM(
    transformer = model_cls(
        **model_cfg,
        text_num_embeds = vocab_size, 
        mel_dim = n_mel_channels
    ),
    mel_spec_kwargs = dict(
        target_sample_rate = target_sample_rate, 
        n_mel_channels = n_mel_channels,
        hop_length = hop_length,
    ),
    odeint_kwargs = dict(
        method = ode_method,
    ),
    vocab_char_map = vocab_char_map,
).to(device)

model = load_checkpoint(model, ckpt_path, device, use_ema = use_ema)

# Audio
audio, sr = torchaudio.load(audio_to_edit)
if audio.shape[0] > 1:
    audio = torch.mean(audio, dim=0, keepdim=True)
rms = torch.sqrt(torch.mean(torch.square(audio)))
if rms < target_rms:
    audio = audio * target_rms / rms
if sr != target_sample_rate:
    resampler = torchaudio.transforms.Resample(sr, target_sample_rate)
    audio = resampler(audio)
offset = 0
audio_ = torch.zeros(1, 0)
edit_mask = torch.zeros(1, 0, dtype=torch.bool)
for part in parts_to_edit:
    start, end = part
    part_dur = end - start if fix_duration is None else fix_duration.pop(0)
    part_dur = part_dur * target_sample_rate
    start = start * target_sample_rate
    audio_ = torch.cat((audio_, audio[:, round(offset):round(start)], torch.zeros(1, round(part_dur))), dim = -1)
    edit_mask = torch.cat((edit_mask, 
                           torch.ones(1, round((start - offset) / hop_length), dtype = torch.bool), 
                           torch.zeros(1, round(part_dur / hop_length), dtype = torch.bool)
                           ), dim = -1)
    offset = end * target_sample_rate
# audio = torch.cat((audio_, audio[:, round(offset):]), dim = -1)
edit_mask = F.pad(edit_mask, (0, audio.shape[-1] // hop_length - edit_mask.shape[-1] + 1), value = True)
audio = audio.to(device)
edit_mask = edit_mask.to(device)

# Text
text_list = [target_text]
if tokenizer == "pinyin":
    final_text_list = convert_char_to_pinyin(text_list)
else:
    final_text_list = [text_list]
print(f"text  : {text_list}")
print(f"pinyin: {final_text_list}")

# Duration
ref_audio_len = 0
duration = audio.shape[-1] // hop_length

# Inference
with torch.inference_mode():
    generated, trajectory = model.sample(
        cond = audio,
        text = final_text_list,
        duration = duration,
        steps = nfe_step,
        cfg_strength = cfg_strength,
        sway_sampling_coef = sway_sampling_coef,
        seed = seed,
        edit_mask = edit_mask,
    )
print(f"Generated mel: {generated.shape}")

# Final result
generated = generated[:, ref_audio_len:, :]
generated_mel_spec = rearrange(generated, '1 n d -> 1 d n')
generated_wave = vocos.decode(generated_mel_spec.cpu())
if rms < target_rms:
    generated_wave = generated_wave * rms / target_rms

save_spectrogram(generated_mel_spec[0].cpu().numpy(), f"{output_dir}/test_single_edit.png")
torchaudio.save(f"{output_dir}/test_single_edit.wav", generated_wave, target_sample_rate)
print(f"Generated wav: {generated_wave.shape}")