File size: 4,766 Bytes
3e38683
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
import argparse
from model import CFM, UNetT, DiT, MMDiT, Trainer
from model.utils import get_tokenizer
from model.dataset import load_dataset
from cached_path import cached_path
import shutil,os
# -------------------------- Dataset Settings --------------------------- #
target_sample_rate = 24000
n_mel_channels = 100
hop_length = 256

tokenizer = "pinyin"  # 'pinyin', 'char', or 'custom'
tokenizer_path = None  # if tokenizer = 'custom', define the path to the tokenizer you want to use (should be vocab.txt)

# -------------------------- Argument Parsing --------------------------- #
def parse_args():
    parser = argparse.ArgumentParser(description='Train CFM Model')

    parser.add_argument('--exp_name', type=str, default="F5TTS_Base", choices=["F5TTS_Base", "E2TTS_Base"],help='Experiment name')
    parser.add_argument('--dataset_name', type=str, default="Emilia_ZH_EN", help='Name of the dataset to use')
    parser.add_argument('--learning_rate', type=float, default=1e-4, help='Learning rate for training')
    parser.add_argument('--batch_size_per_gpu', type=int, default=256, help='Batch size per GPU')
    parser.add_argument('--batch_size_type', type=str, default="frame", choices=["frame", "sample"],help='Batch size type')
    parser.add_argument('--max_samples', type=int, default=16, help='Max sequences per batch')
    parser.add_argument('--grad_accumulation_steps', type=int, default=1,help='Gradient accumulation steps')
    parser.add_argument('--max_grad_norm', type=float, default=1.0, help='Max gradient norm for clipping')
    parser.add_argument('--epochs', type=int, default=10, help='Number of training epochs')
    parser.add_argument('--num_warmup_updates', type=int, default=5, help='Warmup steps')
    parser.add_argument('--save_per_updates', type=int, default=10, help='Save checkpoint every X steps')
    parser.add_argument('--last_per_steps', type=int, default=10, help='Save last checkpoint every X steps')
    parser.add_argument('--finetune', type=bool, default=True, help='Use Finetune')
    
    return parser.parse_args()

# -------------------------- Training Settings -------------------------- #

def main():
    args = parse_args()
    

    # Model parameters based on experiment name
    if args.exp_name == "F5TTS_Base":
        wandb_resume_id = None
        model_cls = DiT
        model_cfg = dict(dim=1024, depth=22, heads=16, ff_mult=2, text_dim=512, conv_layers=4)
        if args.finetune:
           ckpt_path = str(cached_path(f"hf://SWivid/F5-TTS/F5TTS_Base/model_1200000.pt"))
    elif args.exp_name == "E2TTS_Base":
        wandb_resume_id = None
        model_cls = UNetT
        model_cfg = dict(dim=1024, depth=24, heads=16, ff_mult=4)
        if args.finetune:
           ckpt_path = str(cached_path(f"hf://SWivid/E2-TTS/E2TTS_Base/model_1200000.pt"))
           
    if args.finetune:
       path_ckpt = os.path.join("ckpts",args.dataset_name)
       if os.path.isdir(path_ckpt)==False:
          os.makedirs(path_ckpt,exist_ok=True)
          shutil.copy2(ckpt_path,os.path.join(path_ckpt,os.path.basename(ckpt_path)))
    
    checkpoint_path=os.path.join("ckpts",args.dataset_name)

    # Use the dataset_name provided in the command line
    tokenizer_path = args.dataset_name if tokenizer != "custom" else tokenizer_path
    vocab_char_map, vocab_size = get_tokenizer(tokenizer_path, tokenizer)

    mel_spec_kwargs = dict(
        target_sample_rate=target_sample_rate,
        n_mel_channels=n_mel_channels,
        hop_length=hop_length,
    )

    e2tts = CFM(
        transformer=model_cls(
            **model_cfg,
            text_num_embeds=vocab_size,
            mel_dim=n_mel_channels
        ),
        mel_spec_kwargs=mel_spec_kwargs,
        vocab_char_map=vocab_char_map,
    )

    trainer = Trainer(
        e2tts,
        args.epochs,
        args.learning_rate,
        num_warmup_updates=args.num_warmup_updates,
        save_per_updates=args.save_per_updates,
        checkpoint_path=checkpoint_path,
        batch_size=args.batch_size_per_gpu,
        batch_size_type=args.batch_size_type,
        max_samples=args.max_samples,
        grad_accumulation_steps=args.grad_accumulation_steps,
        max_grad_norm=args.max_grad_norm,
        wandb_project="CFM-TTS",
        wandb_run_name=args.exp_name,
        wandb_resume_id=wandb_resume_id,
        last_per_steps=args.last_per_steps,
    )

    train_dataset = load_dataset(args.dataset_name, tokenizer, mel_spec_kwargs=mel_spec_kwargs)
    trainer.train(train_dataset,
                  resumable_with_seed=666  # seed for shuffling dataset
                  )


if __name__ == '__main__':
    main()