Update app.py
Browse files
app.py
CHANGED
@@ -13,7 +13,35 @@ from transformers import AutoModelForCausalLM, AutoTokenizer
|
|
13 |
import torch
|
14 |
|
15 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
chatbot = pipeline(model="microsoft/Phi-3.5-mini-instruct")
|
|
|
|
|
17 |
#token = os.getenv("HF_TOKEN")
|
18 |
#login(token = os.getenv('HF_TOKEN'))
|
19 |
#chatbot = pipeline(model="meta-llama/Llama-3.2-1B")
|
@@ -27,16 +55,38 @@ chatbot = pipeline(model="microsoft/Phi-3.5-mini-instruct")
|
|
27 |
|
28 |
#chatbot = pipeline(model="facebook/blenderbot-400M-distill")
|
29 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
message_list = []
|
31 |
response_list = []
|
32 |
|
33 |
|
34 |
def vanilla_chatbot(message, history):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
#inputs = tokenizer(message, return_tensors="pt").to("cpu")
|
36 |
#with torch.no_grad():
|
37 |
# outputs = model.generate(inputs.input_ids, max_length=100)
|
38 |
#return tokenizer.decode(outputs[0], skip_special_tokens=True)
|
39 |
-
conversation = chatbot(
|
40 |
|
41 |
return conversation[0]['generated_text']
|
42 |
|
|
|
13 |
import torch
|
14 |
|
15 |
|
16 |
+
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
|
17 |
+
from llama_index.core import Settings, SimpleDirectoryReader, VectorStoreIndex
|
18 |
+
from llama_index.core.retrievers import VectorIndexRetriever
|
19 |
+
from llama_index.core.query_engine import RetrieverQueryEngine
|
20 |
+
from llama_index.core.postprocessor import SimilarityPostprocessor
|
21 |
+
|
22 |
+
Settings.embed_model = HuggingFaceEmbedding(model_name="BAAI/bge-small-en-v1.5")
|
23 |
+
Settings.llm = None
|
24 |
+
Settings.chunk_size = 256
|
25 |
+
Settings.chunk_overlap = 25
|
26 |
+
documents = SimpleDirectoryReader("/test").load_data()
|
27 |
+
index = VectorStoreIndex.from_documents(documents)
|
28 |
+
|
29 |
+
top_k = 6
|
30 |
+
|
31 |
+
# configure retriever
|
32 |
+
retriever = VectorIndexRetriever(
|
33 |
+
index=index,
|
34 |
+
similarity_top_k=top_k,
|
35 |
+
)
|
36 |
+
|
37 |
+
query_engine = RetrieverQueryEngine(
|
38 |
+
retriever=retriever,
|
39 |
+
node_postprocessors=[SimilarityPostprocessor(similarity_cutoff=0.5)],
|
40 |
+
)
|
41 |
+
|
42 |
chatbot = pipeline(model="microsoft/Phi-3.5-mini-instruct")
|
43 |
+
|
44 |
+
|
45 |
#token = os.getenv("HF_TOKEN")
|
46 |
#login(token = os.getenv('HF_TOKEN'))
|
47 |
#chatbot = pipeline(model="meta-llama/Llama-3.2-1B")
|
|
|
55 |
|
56 |
#chatbot = pipeline(model="facebook/blenderbot-400M-distill")
|
57 |
|
58 |
+
prompt_template_w_context = lambda context, comment: f"""{context}
|
59 |
+
Please respond to the following comment. Use the context above if it is helpful.
|
60 |
+
{comment}
|
61 |
+
[/INST]
|
62 |
+
"""
|
63 |
+
|
64 |
+
|
65 |
message_list = []
|
66 |
response_list = []
|
67 |
|
68 |
|
69 |
def vanilla_chatbot(message, history):
|
70 |
+
response = query_engine.query(message)
|
71 |
+
# reformat response
|
72 |
+
context = "Context:\n"
|
73 |
+
for i in range(len(response.source_nodes)):
|
74 |
+
context = context + response.source_nodes[i].text + "\n\n"
|
75 |
+
#print(context)
|
76 |
+
prompt = prompt_template_w_context(context, message)
|
77 |
+
#inputs = tokenizer(prompt, return_tensors="pt")
|
78 |
+
#outputs = model.generate(input_ids=inputs["input_ids"].to("cuda"), max_new_tokens=280)
|
79 |
+
#print(tokenizer.batch_decode(outputs)[0])
|
80 |
+
#conversation = pipe(message, temperature=0.1)
|
81 |
+
#ot=tokenizer.batch_decode(outputs)[0]
|
82 |
+
#context_length=len(prompt)
|
83 |
+
#new_sentence = ot[context_length+3:]
|
84 |
+
#return new_sentence
|
85 |
#inputs = tokenizer(message, return_tensors="pt").to("cpu")
|
86 |
#with torch.no_grad():
|
87 |
# outputs = model.generate(inputs.input_ids, max_length=100)
|
88 |
#return tokenizer.decode(outputs[0], skip_special_tokens=True)
|
89 |
+
conversation = chatbot(prompt)
|
90 |
|
91 |
return conversation[0]['generated_text']
|
92 |
|