# -*- coding: utf-8 -*- """ Created on Sat Oct 5 16:41:22 2024 @author: Admin """ import gradio as gr from transformers import pipeline import os from huggingface_hub import login from transformers import AutoModelForCausalLM, AutoTokenizer import torch chatbot = pipeline(model="microsoft/Phi-3.5-mini-instruct") #token = os.getenv("HF_TOKEN") #login(token = os.getenv('HF_TOKEN')) #chatbot = pipeline(model="meta-llama/Llama-3.2-1B") #tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-3.2-1B-Instruct") #model = AutoModelForCausalLM.from_pretrained( # "meta-llama/Llama-3.2-1B-Instruct", # device_map="auto", # torch_dtype="auto", #) #chatbot = pipeline(model="facebook/blenderbot-400M-distill") message_list = [] response_list = [] def vanilla_chatbot(message, history): #inputs = tokenizer(message, return_tensors="pt").to("cpu") #with torch.no_grad(): # outputs = model.generate(inputs.input_ids, max_length=100) #return tokenizer.decode(outputs[0], skip_special_tokens=True) conversation = chatbot(message) return conversation[0]['generated_text'] demo_chatbot = gr.ChatInterface(vanilla_chatbot, title="Vanilla Chatbot", description="Enter text to start chatting.") demo_chatbot.launch(True)