File size: 1,180 Bytes
bba7d00
 
 
 
1a540b4
 
 
bba7d00
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1a540b4
 
 
 
 
 
 
 
bba7d00
 
1a540b4
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
import os
import google.generativeai as genai
import gradio as gr

# Configure the API key for Google Generative AI
GOOGLE_API_KEY = "AIzaSyA9Bh3WRz6LzKaA7MDm6foj1dw8w8kh-gc"
genai.configure(api_key=GOOGLE_API_KEY)

# Set up the generation configuration
generation_config = {
    "temperature": 1,
    "top_p": 0.95,
    "top_k": 64,
    "max_output_tokens": 8192,
    "response_mime_type": "text/plain",
}

# Load the model (Gemini 1.5 flash in this case)
model = genai.GenerativeModel(
    model_name="gemini-1.5-flash",
    generation_config=generation_config,
)

# Function to handle conversation
def generate_response(user_input):
    chat_session = model.start_chat(
        history=[{
            "role": "user",
            "parts": [user_input],
        }]
    )
    
    response = chat_session.send_message(user_input)
    return response.text

# Gradio Interface
iface = gr.Interface(
    fn=generate_response,
    inputs="text",
    outputs="text",
    title="Recipe Generator",
    description="Ask for recipes or any other text-based generation using Google's Gemini AI",
    theme="default",
)

# Launch the Gradio app
if __name__ == "__main__":
    iface.launch()