File size: 1,439 Bytes
0bf84d5
 
 
 
c580a75
17151a7
0a640b3
17151a7
0bf84d5
17151a7
 
 
 
 
0a640b3
17151a7
0a640b3
 
0bf84d5
17151a7
0bf84d5
 
 
 
17151a7
 
0a640b3
17151a7
 
0bf84d5
17151a7
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
#Hello! It seems like you want to import the Streamlit library in Python. Streamlit is a powerful open-source framework used for building web applications with interactive data visualizations and machine learning models. To import Streamlit, you'll need to ensure that you have it installed in your Python environment.
#Once you have Streamlit installed, you can import it into your Python script using the import statement,

import streamlit as st
from langchain.chat_models import ChatOpenAI
from langchain.schema import HumanMessage  # Used to pass a message from the user

# Function to return the response
def load_answer(question):
    llm = ChatOpenAI(model_name="gpt-4", temperature=0)
    
    # The input to the model must be a list of messages, specifically a HumanMessage.
    answer = llm([HumanMessage(content=question)])
    return answer.content  # Extract the content of the response

# App UI starts here
st.set_page_config(page_title="LangChain Demo", page_icon=":robot:")
st.header("LangChain Demo")

# Gets the user input
def get_text():
    input_text = st.text_input("You: ", key="input")
    return input_text

user_input = get_text()
submit = st.button('Generate')

# If generate button is clicked
if submit and user_input:
    st.subheader("Answer:")
    response = load_answer(user_input)  # Generate the response
    st.write(response)
elif submit and not user_input:
    st.warning("Please enter a question.")