File size: 1,088 Bytes
0bf84d5
 
 
 
 
 
c580a75
0a640b3
 
0bf84d5
846b654
0a640b3
 
 
0bf84d5
0a640b3
 
 
0bf84d5
0a640b3
0bf84d5
 
 
 
0a640b3
 
0bf84d5
 
0a640b3
0bf84d5
0a640b3
0bf84d5
0a640b3
0bf84d5
 
0a640b3
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
#Hello! It seems like you want to import the Streamlit library in Python. Streamlit is a powerful open-source framework used for building web applications with interactive data visualizations and machine learning models. To import Streamlit, you'll need to ensure that you have it installed in your Python environment.
#Once you have Streamlit installed, you can import it into your Python script using the import statement,

import streamlit as st


from langchain.chat_models import ChatOpenAI

#Function to return the response
def load_answer(question):
    llm =ChatOpenAI(model_name="gpt-4-turbo-preview",temperature=0)
    answer=llm(question)
    return answer


#App UI starts here
st.set_page_config(page_title="LangChain Demo", page_icon=":robot:")
st.header("LangChain Demo")

#Gets the user input
def get_text():
    input_text = st.text_input("You: ", key="input")
    return input_text


user_input=get_text()
response = load_answer(user_input)

submit = st.button('Generate')  

#If generate button is clicked
if submit:

    st.subheader("Answer:")

    st.write(response)