File size: 1,273 Bytes
0bf84d5
 
 
 
be332a1
0bf84d5
be332a1
 
 
6ec5a5c
0bf84d5
be332a1
0bf84d5
be332a1
 
 
0bf84d5
be332a1
 
 
0bf84d5
be332a1
0bf84d5
 
 
 
be332a1
0bf84d5
 
be332a1
0bf84d5
be332a1
0bf84d5
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
#Hello! It seems like you want to import the Streamlit library in Python. Streamlit is a powerful open-source framework used for building web applications with interactive data visualizations and machine learning models. To import Streamlit, you'll need to ensure that you have it installed in your Python environment.
#Once you have Streamlit installed, you can import it into your Python script using the import statement,

import streamlit as st
from transformers import pipeline

# Load the Hugging Face model (GPT-2 in this case)
@st.cache_resource
def load_model():
    return pipeline("text-generation", model="gpt-4o")

# Function to return the response from Hugging Face model
def load_answer(question):
    model = load_model()
    answer = model(question, max_length=100, num_return_sequences=1)
    return answer[0]['generated_text']

# App UI starts here
st.set_page_config(page_title="Hugging Face Demo", page_icon=":robot:")
st.header("Hugging Face Demo")

# Gets the user input
def get_text():
    input_text = st.text_input("You: ", key="input")
    return input_text

user_input = get_text()
response = load_answer(user_input)

submit = st.button('Generate')

# If generate button is clicked
if submit:
    st.subheader("Answer:")
    st.write(response)