#Hello! It seems like you want to import the Streamlit library in Python. Streamlit is a powerful open-source framework used for building web applications with interactive data visualizations and machine learning models. To import Streamlit, you'll need to ensure that you have it installed in your Python environment. #Once you have Streamlit installed, you can import it into your Python script using the import statement, import streamlit as st from langchain import HuggingFaceHub # Correct import for Hugging Face # Set your Hugging Face API token HUGGINGFACE_API_TOKEN = "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" # Function to return the response from Hugging Face model def load_answer(question): # Initialize the Hugging Face model llm = HuggingFaceHub( repo_id="mistralai/Mistral-7B-Instruct-v0.3", # Specify the Hugging Face model huggingfacehub_api_token=HUGGINGFACE_API_TOKEN, # Pass your API token model_kwargs={"temperature": 0} # Optional: Control response randomness ) # Call the model with the user's question and get the response answer = llm(question) return answer # Streamlit App UI starts here st.set_page_config(page_title="LangChain Demo", page_icon=":robot:") st.header("LangChain Demo") # Function to get user input def get_text(): input_text = st.text_input("You: ", key="input") return input_text # Get user input user_input = get_text() # Create a button for generating the response submit = st.button('Generate') # If generate button is clicked and user input is not empty if submit and user_input: response = load_answer(user_input) st.subheader("Answer:") st.write(response) elif submit: st.warning("Please enter a question.") # Warning for empty input