Spaces:
Running
Running
semi-final version
Browse files
app.py
CHANGED
@@ -7,6 +7,10 @@ from gradio_client import Client, handle_file
|
|
7 |
import numpy as np
|
8 |
import cv2
|
9 |
import os
|
|
|
|
|
|
|
|
|
10 |
|
11 |
# Инициализация моделей
|
12 |
from transformers import OneFormerProcessor, OneFormerForUniversalSegmentation
|
@@ -22,7 +26,6 @@ oneFormer_model = OneFormerForUniversalSegmentation.from_pretrained("shi-labs/on
|
|
22 |
# inpainting_client = InferenceClient(model="stabilityai/stable-diffusion-inpainting")
|
23 |
# Функции для обработки изображений
|
24 |
def segment_image(image):
|
25 |
-
image = Image.fromarray(image)
|
26 |
inputs = oneFormer_processor(image, task_inputs=["panoptic"], return_tensors="pt")
|
27 |
|
28 |
with torch.no_grad():
|
@@ -91,7 +94,94 @@ def merge_segments_by_labels(gallery_images, labels_input):
|
|
91 |
else:
|
92 |
return gallery_images
|
93 |
|
|
|
|
|
|
|
|
|
|
|
|
|
94 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
95 |
def hunyuan_client(request: gr.Request):
|
96 |
try:
|
97 |
client = Client("tencent/Hunyuan3D-2", headers={"X-IP-Token": request.headers['x-ip-token']})
|
@@ -110,117 +200,115 @@ def vFusion_client(request: gr.Request):
|
|
110 |
print("facebook/VFusion3D no token")
|
111 |
return Client("facebook/VFusion3D")
|
112 |
|
113 |
-
def generate_3d_model(
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
# # Предполагается, что segments - список изображений сегментов
|
161 |
-
# results = []
|
162 |
-
# for segment in segments:
|
163 |
-
# results.append(classification(segment))
|
164 |
-
# return results # Вернем список классификаций
|
165 |
-
|
166 |
-
# def upscale_segment(segment):
|
167 |
-
# upscaled = upscaling_client.image_to_image(segment)
|
168 |
-
# return upscaled
|
169 |
-
|
170 |
-
# def inpaint_image(image, mask, prompt):
|
171 |
-
# inpainted = inpainting_client.text_to_image(prompt, image=image, mask=mask)
|
172 |
-
# return inpainted
|
173 |
-
|
174 |
-
|
175 |
|
176 |
|
177 |
########## GRADIO ##########
|
178 |
|
|
|
179 |
with gr.Blocks() as demo:
|
180 |
gr.Markdown("# Анализ и редактирование помещений")
|
181 |
-
|
182 |
with gr.Tab("Сканирование"):
|
183 |
-
with gr.Row():
|
184 |
with gr.Column(scale=5):
|
185 |
-
image_input = gr.Image()
|
186 |
segment_button = gr.Button("Сегментировать")
|
187 |
with gr.Column(scale=5):
|
188 |
-
|
189 |
merge_segments_input = gr.Textbox(label="Сегменты для объединения (через точку с запятой, например: \"wall_0; tv_0\")")
|
190 |
merge_segments_button = gr.Button("Соединить сегменты")
|
191 |
-
merge_segments_button.click(merge_segments_by_labels, inputs=[
|
192 |
-
|
|
|
|
|
|
|
|
|
193 |
with gr.Column(scale=5):
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
198 |
with gr.Column(scale=5):
|
199 |
trellis_output = gr.Model3D(label="3D Model")
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
|
220 |
-
# with gr.Tab("Создание 3D моделей"):
|
221 |
-
# segment_input_3d = gr.Image()
|
222 |
-
# model_output = gr.File()
|
223 |
-
# model_button = gr.Button("Создать 3D модель")
|
224 |
-
# model_button.click(generate_3d_model, inputs=segment_input_3d, outputs=model_output)
|
225 |
-
|
226 |
-
demo.launch(debug=True, show_error=True)
|
|
|
7 |
import numpy as np
|
8 |
import cv2
|
9 |
import os
|
10 |
+
import tempfile
|
11 |
+
import io
|
12 |
+
import base64
|
13 |
+
import requests
|
14 |
|
15 |
# Инициализация моделей
|
16 |
from transformers import OneFormerProcessor, OneFormerForUniversalSegmentation
|
|
|
26 |
# inpainting_client = InferenceClient(model="stabilityai/stable-diffusion-inpainting")
|
27 |
# Функции для обработки изображений
|
28 |
def segment_image(image):
|
|
|
29 |
inputs = oneFormer_processor(image, task_inputs=["panoptic"], return_tensors="pt")
|
30 |
|
31 |
with torch.no_grad():
|
|
|
94 |
else:
|
95 |
return gallery_images
|
96 |
|
97 |
+
def select_segment(segment_output, segment_name):
|
98 |
+
for i, (image_path, label) in enumerate(segment_output):
|
99 |
+
if label == segment_name:
|
100 |
+
return image_path
|
101 |
+
|
102 |
+
#Image edit
|
103 |
|
104 |
+
def return_image(imageEditor):
|
105 |
+
return imageEditor['composite']
|
106 |
+
|
107 |
+
def rembg_client(request: gr.Request):
|
108 |
+
try:
|
109 |
+
client = Client("KenjieDec/RemBG", headers={"X-IP-Token": request.headers['x-ip-token']})
|
110 |
+
print("KenjieDec/RemBG Ip token")
|
111 |
+
return client
|
112 |
+
except:
|
113 |
+
print("KenjieDec/RemBG no token")
|
114 |
+
return Client("KenjieDec/RemBG")
|
115 |
+
|
116 |
+
def autocrop_image(imageEditor, border = 0):
|
117 |
+
image = imageEditor['composite']
|
118 |
+
bbox = image.getbbox()
|
119 |
+
image = image.crop(bbox)
|
120 |
+
(width, height) = image.size
|
121 |
+
width += border * 2
|
122 |
+
height += border * 2
|
123 |
+
cropped_image = Image.new("RGBA", (width, height), (0,0,0,0))
|
124 |
+
cropped_image.paste(image, (border, border))
|
125 |
+
return cropped_image
|
126 |
+
|
127 |
+
def remove_black_make_transparent(imageEditor):
|
128 |
+
image_pil = imageEditor['composite']
|
129 |
+
if image_pil.mode != "RGBA":
|
130 |
+
image_pil = image_pil.convert("RGBA")
|
131 |
+
image_np = np.array(image_pil)
|
132 |
+
black_pixels_mask = np.all(image_np[:, :, :3] == [0, 0, 0], axis=-1)
|
133 |
+
image_np[black_pixels_mask, 3] = 0
|
134 |
+
transparent_image = Image.fromarray(image_np)
|
135 |
+
return transparent_image
|
136 |
+
|
137 |
+
def rembg(imageEditor, request: gr.Request):
|
138 |
+
with tempfile.NamedTemporaryFile(suffix=".png", delete=False) as temp_file:
|
139 |
+
imageEditor['composite'].save(temp_file.name)
|
140 |
+
temp_file_path = temp_file.name
|
141 |
+
client = rembg_client(request)
|
142 |
+
result = client.predict(
|
143 |
+
file=handle_file(temp_file_path),
|
144 |
+
mask="Default",
|
145 |
+
model="birefnet-general-lite",
|
146 |
+
x=0,
|
147 |
+
y=0,
|
148 |
+
api_name="/inference"
|
149 |
+
)
|
150 |
+
print(result)
|
151 |
+
return result
|
152 |
+
|
153 |
+
def add_transparent_border(imageEditor, border_size=200):
|
154 |
+
image = imageEditor['composite']
|
155 |
+
width, height = image.size
|
156 |
+
new_width = width + 2 * border_size
|
157 |
+
new_height = height + 2 * border_size
|
158 |
+
new_image = Image.new("RGBA", (new_width, new_height), (0, 0, 0, 0))
|
159 |
+
new_image.paste(image, (border_size, border_size))
|
160 |
+
return new_image
|
161 |
+
|
162 |
+
def upscale(imageEditor, scale, request: gr.Request):
|
163 |
+
return upscale_image(imageEditor['composite'], version="v1.4", rescaling_factor=scale)
|
164 |
+
|
165 |
+
def upscale_image(image_pil, version="v1.4", rescaling_factor=None):
|
166 |
+
buffered = io.BytesIO()
|
167 |
+
image_pil.save(buffered, format="PNG") # Save as PNG
|
168 |
+
img_str = base64.b64encode(buffered.getvalue()).decode()
|
169 |
+
|
170 |
+
# Update the data format for PNG
|
171 |
+
data = {"data": [f"data:image/png;base64,{img_str}", version, rescaling_factor]}
|
172 |
+
# Send request to the API
|
173 |
+
response = requests.post("https://nightfury-image-face-upscale-restoration-gfpgan.hf.space/api/predict", json=data)
|
174 |
+
response.raise_for_status()
|
175 |
+
# Get the base64 data from the response
|
176 |
+
base64_data = response.json()["data"][0]
|
177 |
+
base64_data = base64_data.split(",")[1] # remove data:image/png;base64,
|
178 |
+
# Convert base64 back to PIL Image
|
179 |
+
image_bytes = base64.b64decode(base64_data)
|
180 |
+
upscaled_image = Image.open(io.BytesIO(image_bytes))
|
181 |
+
return upscaled_image
|
182 |
+
|
183 |
+
|
184 |
+
#3d models
|
185 |
def hunyuan_client(request: gr.Request):
|
186 |
try:
|
187 |
client = Client("tencent/Hunyuan3D-2", headers={"X-IP-Token": request.headers['x-ip-token']})
|
|
|
200 |
print("facebook/VFusion3D no token")
|
201 |
return Client("facebook/VFusion3D")
|
202 |
|
203 |
+
def generate_3d_model(image_pil, rembg_Hunyuan, request: gr.Request):
|
204 |
+
with tempfile.NamedTemporaryFile(suffix=".png", delete=False) as temp_file:
|
205 |
+
image_pil.save(temp_file.name)
|
206 |
+
temp_file_path = temp_file.name
|
207 |
+
client = hunyuan_client(request)
|
208 |
+
result = client.predict(
|
209 |
+
caption="",
|
210 |
+
image=handle_file(temp_file_path),
|
211 |
+
steps=50,
|
212 |
+
guidance_scale=5.5,
|
213 |
+
seed=1234,
|
214 |
+
octree_resolution="256",
|
215 |
+
check_box_rembg=rembg_Hunyuan,
|
216 |
+
api_name="/shape_generation"
|
217 |
+
)
|
218 |
+
print(result)
|
219 |
+
return result[0]
|
220 |
+
|
221 |
+
def generate_3d_model_texture(image_pil, rembg_Hunyuan, request: gr.Request):
|
222 |
+
with tempfile.NamedTemporaryFile(suffix=".png", delete=False) as temp_file:
|
223 |
+
image_pil.save(temp_file.name)
|
224 |
+
temp_file_path = temp_file.name
|
225 |
+
client = hunyuan_client(request)
|
226 |
+
result = client.predict(
|
227 |
+
caption="",
|
228 |
+
image=handle_file(temp_file_path),
|
229 |
+
steps=50,
|
230 |
+
guidance_scale=5.5,
|
231 |
+
seed=1234,
|
232 |
+
octree_resolution="256",
|
233 |
+
check_box_rembg=rembg_Hunyuan,
|
234 |
+
api_name="/generation_all"
|
235 |
+
)
|
236 |
+
print(result)
|
237 |
+
return result[1]
|
238 |
+
|
239 |
+
def generate_3d_model2(image_pil, request: gr.Request):
|
240 |
+
with tempfile.NamedTemporaryFile(suffix=".png", delete=False) as temp_file:
|
241 |
+
image_pil.save(temp_file.name)
|
242 |
+
temp_file_path = temp_file.name
|
243 |
+
client = vFusion_client(request)
|
244 |
+
result = client.predict(
|
245 |
+
image=handle_file(temp_file_path),
|
246 |
+
api_name="/step_1_generate_obj"
|
247 |
+
)
|
248 |
+
print(result)
|
249 |
+
return result[0]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
250 |
|
251 |
|
252 |
########## GRADIO ##########
|
253 |
|
254 |
+
|
255 |
with gr.Blocks() as demo:
|
256 |
gr.Markdown("# Анализ и редактирование помещений")
|
|
|
257 |
with gr.Tab("Сканирование"):
|
258 |
+
with gr.Row(equal_height=True):
|
259 |
with gr.Column(scale=5):
|
260 |
+
image_input = gr.Image(type="pil", label="Исходное изображение", height = 400)
|
261 |
segment_button = gr.Button("Сегментировать")
|
262 |
with gr.Column(scale=5):
|
263 |
+
segments_output = gr.Gallery(label="Сегменты изображения")
|
264 |
merge_segments_input = gr.Textbox(label="Сегменты для объединения (через точку с запятой, например: \"wall_0; tv_0\")")
|
265 |
merge_segments_button = gr.Button("Соединить сегменты")
|
266 |
+
merge_segments_button.click(merge_segments_by_labels, inputs=[segments_output, merge_segments_input], outputs=segments_output)
|
267 |
+
with gr.Row(equal_height=True):
|
268 |
+
segment_text_input = gr.Textbox(label="Имя сегмента для дальнейшего редактирования")
|
269 |
+
select_segment_button = gr.Button("Использовать сегмент")
|
270 |
+
with gr.Tab("Редактирование"):
|
271 |
+
with gr.Row(equal_height=True):
|
272 |
with gr.Column(scale=5):
|
273 |
+
segment_input = gr.ImageEditor(type="pil", label="Сегмент для редактирования")
|
274 |
+
with gr.Column(scale=5):
|
275 |
+
crop_button = gr.Button("Обрезать сегмент")
|
276 |
+
with gr.Row(equal_height=True):
|
277 |
+
upscale_slider = gr.Slider(minimum=1, maximum=5, value=2, step=0.1, label="во сколько раз")
|
278 |
+
upscale_button = gr.Button("Upscale")
|
279 |
+
rembg_button = gr.Button("Rembg")
|
280 |
+
remove_background_button = gr.Button("Убрать черный задний фон")
|
281 |
+
with gr.Row(equal_height=True):
|
282 |
+
add_transparent_border_slider = gr.Slider(minimum=10, maximum=500, value=200, step=10, label="в пикселях")
|
283 |
+
add_transparent_border_button = gr.Button("Добавить прозрачные края")
|
284 |
+
use_button = gr.Button("Использовать сегмент для 3D")
|
285 |
+
|
286 |
+
with gr.Tab("Создание 3D"):
|
287 |
+
with gr.Row(equal_height=True):
|
288 |
+
with gr.Column(scale=5):
|
289 |
+
segment_3d_input = gr.Image(type="pil", image_mode="RGBA", label="Сегмент для 3D", height = 600)
|
290 |
+
rembg_Hunyuan = gr.Checkbox(label="Hunyuan3D-2 rembg Enabled", info="Включить rembg для Hunyuan3D-2?")
|
291 |
+
hunyuan_button = gr.Button("Hunyuan3D-2 (no texture) [ZeroGPU = 100s]")
|
292 |
+
hunyuan_button_texture = gr.Button("Hunyuan3D-2 (with texture) [ZeroGPU = 150s]")
|
293 |
+
vFusion_button = gr.Button("VFusion3D [если у вас совсем все грустно по ZeroGPU]")
|
294 |
with gr.Column(scale=5):
|
295 |
trellis_output = gr.Model3D(label="3D Model")
|
296 |
+
|
297 |
+
#tab1
|
298 |
+
segment_button.click(segment_image, inputs=image_input, outputs=segments_output)
|
299 |
+
select_segment_button.click(select_segment, inputs=[segments_output, segment_text_input], outputs=segment_input)
|
300 |
+
|
301 |
+
#tab2
|
302 |
+
crop_button.click(autocrop_image, inputs=segment_input, outputs=segment_input)
|
303 |
+
upscale_button.click(upscale, inputs=[segment_input, upscale_slider], outputs=segment_input)
|
304 |
+
rembg_button.click(rembg, inputs=segment_input, outputs=segment_input)
|
305 |
+
remove_background_button.click(remove_black_make_transparent, inputs=segment_input, outputs=segment_input)
|
306 |
+
add_transparent_border_button.click(add_transparent_border, inputs=[segment_input, add_transparent_border_slider], outputs=segment_input)
|
307 |
+
use_button.click(return_image, inputs=segment_input, outputs=segment_3d_input)
|
308 |
+
|
309 |
+
#3d buttons
|
310 |
+
hunyuan_button.click(generate_3d_model, inputs=[segment_3d_input, rembg_Hunyuan], outputs=trellis_output)
|
311 |
+
hunyuan_button_texture.click(generate_3d_model_texture, inputs=[segment_3d_input, rembg_Hunyuan], outputs=trellis_output)
|
312 |
+
vFusion_button.click(generate_3d_model2, inputs=segment_3d_input, outputs=trellis_output)
|
313 |
+
|
314 |
+
demo.launch(debug=True, show_error=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|