Spaces:
Sleeping
Sleeping
import streamlit as st | |
import os | |
from langchain_community.vectorstores import FAISS | |
from langchain_community.document_loaders import PyPDFLoader | |
from langchain.text_splitter import RecursiveCharacterTextSplitter | |
from langchain_community.embeddings import HuggingFaceEmbeddings | |
from langchain_huggingface import HuggingFaceEndpoint # Updated import | |
from langchain.chains import ConversationalRetrievalChain | |
from langchain.memory import ConversationBufferMemory | |
import tempfile | |
api_token = os.getenv("HF_TOKEN") | |
list_llm = ["meta-llama/Meta-Llama-3-8B-Instruct", "mistralai/Mistral-7B-Instruct-v0.2"] | |
list_llm_simple = [os.path.basename(llm) for llm in list_llm] | |
def load_doc(uploaded_files): | |
try: | |
temp_files = [] | |
for uploaded_file in uploaded_files: | |
temp_file = tempfile.NamedTemporaryFile(delete=False, suffix=".pdf") | |
temp_file.write(uploaded_file.read()) | |
temp_file.close() | |
temp_files.append(temp_file.name) | |
loaders = [PyPDFLoader(x) for x in temp_files] | |
pages = [] | |
for loader in loaders: | |
pages.extend(loader.load()) | |
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1024, chunk_overlap=64) | |
doc_splits = text_splitter.split_documents(pages) | |
for temp_file in temp_files: | |
os.remove(temp_file) # Clean up temporary files | |
return doc_splits | |
except Exception as e: | |
st.error(f"Error loading document: {e}") | |
return [] | |
def create_db(splits): | |
try: | |
embeddings = HuggingFaceEmbeddings() | |
vectordb = FAISS.from_documents(splits, embeddings) | |
return vectordb | |
except Exception as e: | |
st.error(f"Error creating vector database: {e}") | |
return None | |
def initialize_llmchain(llm_model, vector_db): | |
try: | |
llm = HuggingFaceEndpoint( | |
repo_id=llm_model, | |
huggingfacehub_api_token=api_token, | |
temperature=0.5, | |
max_new_tokens=4096, | |
top_k=3, | |
) | |
memory = ConversationBufferMemory( | |
memory_key="chat_history", | |
output_key='answer', | |
return_messages=True | |
) | |
retriever = vector_db.as_retriever() | |
qa_chain = ConversationalRetrievalChain.from_llm( | |
llm, | |
retriever=retriever, | |
chain_type="stuff", | |
memory=memory, | |
return_source_documents=True, | |
verbose=False, | |
) | |
return qa_chain | |
except Exception as e: | |
st.error(f"Error initializing LLM chain: {e}") | |
return None | |
def initialize_database(uploaded_files): | |
try: | |
doc_splits = load_doc(uploaded_files) | |
if not doc_splits: | |
return None, "Failed to load documents." | |
vector_db = create_db(doc_splits) | |
if vector_db is None: | |
return None, "Failed to create vector database." | |
return vector_db, "Database created!" | |
except Exception as e: | |
st.error(f"Error initializing database: {e}") | |
return None, "Failed to initialize database." | |
def initialize_LLM(llm_option, vector_db): | |
try: | |
llm_name = list_llm[llm_option] | |
qa_chain = initialize_llmchain(llm_name, vector_db) | |
if qa_chain is None: | |
return None, "Failed to initialize QA chain." | |
return qa_chain, "QA chain initialized. Chatbot is ready!" | |
except Exception as e: | |
st.error(f"Error initializing LLM: {e}") | |
return None, "Failed to initialize LLM." | |
def format_chat_history(chat_history): | |
formatted_chat_history = [] | |
for user_message, bot_message in chat_history: | |
formatted_chat_history.append(f"User: {user_message}\nAssistant: {bot_message}\n") | |
return formatted_chat_history | |
def conversation(qa_chain, message, history): | |
try: | |
formatted_chat_history = format_chat_history(history) | |
response = qa_chain.invoke({"question": message, "chat_history": formatted_chat_history}) | |
response_answer = response["answer"] | |
response_sources = response["source_documents"] | |
sources = [] | |
for doc in response_sources: | |
sources.append({ | |
"content": doc.page_content.strip(), | |
"page": doc.metadata["page"] + 1 | |
}) | |
new_history = history + [(message, response_answer)] | |
return qa_chain, new_history, response_answer, sources | |
except Exception as e: | |
st.error(f"Error in conversation: {e}") | |
return qa_chain, history, "", [] | |
def main(): | |
st.sidebar.title("PDF Chatbot") | |
st.sidebar.markdown("### Step 1 - Upload PDF documents and create the vector database") | |
uploaded_files = st.sidebar.file_uploader("Upload PDF documents", type="pdf", accept_multiple_files=True) | |
if uploaded_files: | |
if st.sidebar.button("Create vector database"): | |
with st.spinner("Creating vector database..."): | |
vector_db, db_message = initialize_database(uploaded_files) | |
st.sidebar.success(db_message) | |
st.session_state['vector_db'] = vector_db | |
if 'vector_db' not in st.session_state: | |
st.session_state['vector_db'] = None | |
if 'qa_chain' not in st.session_state: | |
st.session_state['qa_chain'] = None | |
if 'chat_history' not in st.session_state: | |
st.session_state['chat_history'] = [] | |
st.sidebar.markdown("### Select Large Language Model (LLM)") | |
llm_option = st.sidebar.radio("Available LLMs", list_llm_simple) | |
if st.sidebar.button("Initialize Question Answering Chatbot"): | |
with st.spinner("Initializing QA chatbot..."): | |
qa_chain, llm_message = initialize_LLM(list_llm_simple.index(llm_option), st.session_state['vector_db']) | |
st.session_state['qa_chain'] = qa_chain | |
st.sidebar.success(llm_message) | |
st.title("Chat with your Document") | |
sources = [] # Initialize sources variable | |
if st.session_state['qa_chain']: | |
message = st.text_input("Ask a question") | |
if st.button("Submit"): | |
with st.spinner("Generating response..."): | |
qa_chain, chat_history, response_answer, sources = conversation(st.session_state['qa_chain'], message, st.session_state['chat_history']) | |
st.session_state['qa_chain'] = qa_chain | |
st.session_state['chat_history'] = chat_history | |
st.markdown("### Chatbot Response") | |
# Display the chat history in a chat-like interface | |
for i, (user_msg, bot_msg) in enumerate(st.session_state['chat_history']): | |
st.markdown(f"**User:** {user_msg}") | |
st.markdown(f"**Assistant:** {bot_msg}") | |
with st.expander("Relevant context from the source document"): | |
for source in sources: | |
st.text_area(f"Source - Page {source['page']}", value=source["content"], height=100) | |
if __name__ == "__main__": | |
main() | |