Sharal's picture
Update app.py
0f23f69 verified
import streamlit as st
import os
from langchain_community.vectorstores import FAISS
from langchain_community.document_loaders import PyPDFLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_community.embeddings import HuggingFaceEmbeddings
from langchain_huggingface import HuggingFaceEndpoint # Updated import
from langchain.chains import ConversationalRetrievalChain
from langchain.memory import ConversationBufferMemory
import tempfile
api_token = os.getenv("HF_TOKEN")
list_llm = ["meta-llama/Meta-Llama-3-8B-Instruct", "mistralai/Mistral-7B-Instruct-v0.2"]
list_llm_simple = [os.path.basename(llm) for llm in list_llm]
def load_doc(uploaded_files):
try:
temp_files = []
for uploaded_file in uploaded_files:
temp_file = tempfile.NamedTemporaryFile(delete=False, suffix=".pdf")
temp_file.write(uploaded_file.read())
temp_file.close()
temp_files.append(temp_file.name)
loaders = [PyPDFLoader(x) for x in temp_files]
pages = []
for loader in loaders:
pages.extend(loader.load())
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1024, chunk_overlap=64)
doc_splits = text_splitter.split_documents(pages)
for temp_file in temp_files:
os.remove(temp_file) # Clean up temporary files
return doc_splits
except Exception as e:
st.error(f"Error loading document: {e}")
return []
def create_db(splits):
try:
embeddings = HuggingFaceEmbeddings()
vectordb = FAISS.from_documents(splits, embeddings)
return vectordb
except Exception as e:
st.error(f"Error creating vector database: {e}")
return None
def initialize_llmchain(llm_model, vector_db):
try:
llm = HuggingFaceEndpoint(
repo_id=llm_model,
huggingfacehub_api_token=api_token,
temperature=0.5,
max_new_tokens=4096,
top_k=3,
)
memory = ConversationBufferMemory(
memory_key="chat_history",
output_key='answer',
return_messages=True
)
retriever = vector_db.as_retriever()
qa_chain = ConversationalRetrievalChain.from_llm(
llm,
retriever=retriever,
chain_type="stuff",
memory=memory,
return_source_documents=True,
verbose=False,
)
return qa_chain
except Exception as e:
st.error(f"Error initializing LLM chain: {e}")
return None
def initialize_database(uploaded_files):
try:
doc_splits = load_doc(uploaded_files)
if not doc_splits:
return None, "Failed to load documents."
vector_db = create_db(doc_splits)
if vector_db is None:
return None, "Failed to create vector database."
return vector_db, "Database created!"
except Exception as e:
st.error(f"Error initializing database: {e}")
return None, "Failed to initialize database."
def initialize_LLM(llm_option, vector_db):
try:
llm_name = list_llm[llm_option]
qa_chain = initialize_llmchain(llm_name, vector_db)
if qa_chain is None:
return None, "Failed to initialize QA chain."
return qa_chain, "QA chain initialized. Chatbot is ready!"
except Exception as e:
st.error(f"Error initializing LLM: {e}")
return None, "Failed to initialize LLM."
def format_chat_history(chat_history):
formatted_chat_history = []
for user_message, bot_message in chat_history:
formatted_chat_history.append(f"User: {user_message}\nAssistant: {bot_message}\n")
return formatted_chat_history
def conversation(qa_chain, message, history):
try:
formatted_chat_history = format_chat_history(history)
response = qa_chain.invoke({"question": message, "chat_history": formatted_chat_history})
response_answer = response["answer"]
response_sources = response["source_documents"]
sources = []
for doc in response_sources:
sources.append({
"content": doc.page_content.strip(),
"page": doc.metadata["page"] + 1
})
new_history = history + [(message, response_answer)]
return qa_chain, new_history, response_answer, sources
except Exception as e:
st.error(f"Error in conversation: {e}")
return qa_chain, history, "", []
def main():
st.sidebar.title("PDF Chatbot")
st.sidebar.markdown("### Step 1 - Upload PDF documents and create the vector database")
uploaded_files = st.sidebar.file_uploader("Upload PDF documents", type="pdf", accept_multiple_files=True)
if uploaded_files:
if st.sidebar.button("Create vector database"):
with st.spinner("Creating vector database..."):
vector_db, db_message = initialize_database(uploaded_files)
st.sidebar.success(db_message)
st.session_state['vector_db'] = vector_db
if 'vector_db' not in st.session_state:
st.session_state['vector_db'] = None
if 'qa_chain' not in st.session_state:
st.session_state['qa_chain'] = None
if 'chat_history' not in st.session_state:
st.session_state['chat_history'] = []
st.sidebar.markdown("### Select Large Language Model (LLM)")
llm_option = st.sidebar.radio("Available LLMs", list_llm_simple)
if st.sidebar.button("Initialize Question Answering Chatbot"):
with st.spinner("Initializing QA chatbot..."):
qa_chain, llm_message = initialize_LLM(list_llm_simple.index(llm_option), st.session_state['vector_db'])
st.session_state['qa_chain'] = qa_chain
st.sidebar.success(llm_message)
st.title("Chat with your Document")
sources = [] # Initialize sources variable
if st.session_state['qa_chain']:
message = st.text_input("Ask a question")
if st.button("Submit"):
with st.spinner("Generating response..."):
qa_chain, chat_history, response_answer, sources = conversation(st.session_state['qa_chain'], message, st.session_state['chat_history'])
st.session_state['qa_chain'] = qa_chain
st.session_state['chat_history'] = chat_history
st.markdown("### Chatbot Response")
# Display the chat history in a chat-like interface
for i, (user_msg, bot_msg) in enumerate(st.session_state['chat_history']):
st.markdown(f"**User:** {user_msg}")
st.markdown(f"**Assistant:** {bot_msg}")
with st.expander("Relevant context from the source document"):
for source in sources:
st.text_area(f"Source - Page {source['page']}", value=source["content"], height=100)
if __name__ == "__main__":
main()