Sharal commited on
Commit
1049376
·
verified ·
1 Parent(s): 85dbb90

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +169 -0
app.py ADDED
@@ -0,0 +1,169 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ import os
3
+ from langchain_community.vectorstores import FAISS
4
+ from langchain_community.document_loaders import PyPDFLoader
5
+ from langchain.text_splitter import RecursiveCharacterTextSplitter
6
+ from langchain_community.embeddings import HuggingFaceEmbeddings
7
+ from langchain_community.llms import HuggingFaceEndpoint
8
+ from langchain.chains import ConversationalRetrievalChain
9
+ from langchain.memory import ConversationBufferMemory
10
+ import torch
11
+
12
+ api_token = os.getenv("HF_TOKEN")
13
+ list_llm = ["meta-llama/Meta-Llama-3-8B-Instruct", "mistralai/Mistral-7B-Instruct-v0.2"]
14
+ list_llm_simple = [os.path.basename(llm) for llm in list_llm]
15
+
16
+ def load_doc(list_file_path):
17
+ try:
18
+ loaders = [PyPDFLoader(x) for x in list_file_path]
19
+ pages = []
20
+ for loader in loaders:
21
+ pages.extend(loader.load())
22
+ text_splitter = RecursiveCharacterTextSplitter(chunk_size=1024, chunk_overlap=64)
23
+ doc_splits = text_splitter.split_documents(pages)
24
+ return doc_splits
25
+ except Exception as e:
26
+ st.error(f"Error loading document: {e}")
27
+ return []
28
+
29
+ def create_db(splits):
30
+ try:
31
+ embeddings = HuggingFaceEmbeddings()
32
+ vectordb = FAISS.from_documents(splits, embeddings)
33
+ return vectordb
34
+ except Exception as e:
35
+ st.error(f"Error creating vector database: {e}")
36
+ return None
37
+
38
+ def initialize_llmchain(llm_model, temperature, max_tokens, top_k, vector_db):
39
+ try:
40
+ llm = HuggingFaceEndpoint(
41
+ repo_id=llm_model,
42
+ huggingfacehub_api_token=api_token,
43
+ temperature=temperature,
44
+ max_new_tokens=max_tokens,
45
+ top_k=top_k,
46
+ )
47
+ memory = ConversationBufferMemory(
48
+ memory_key="chat_history",
49
+ output_key='answer',
50
+ return_messages=True
51
+ )
52
+
53
+ retriever = vector_db.as_retriever()
54
+ qa_chain = ConversationalRetrievalChain.from_llm(
55
+ llm,
56
+ retriever=retriever,
57
+ chain_type="stuff",
58
+ memory=memory,
59
+ return_source_documents=True,
60
+ verbose=False,
61
+ )
62
+ return qa_chain
63
+ except Exception as e:
64
+ st.error(f"Error initializing LLM chain: {e}")
65
+ return None
66
+
67
+ def initialize_database(list_file_obj):
68
+ try:
69
+ list_file_path = [x.name for x in list_file_obj if x is not None]
70
+ doc_splits = load_doc(list_file_path)
71
+ if not doc_splits:
72
+ return None, "Failed to load documents."
73
+ vector_db = create_db(doc_splits)
74
+ if vector_db is None:
75
+ return None, "Failed to create vector database."
76
+ return vector_db, "Database created!"
77
+ except Exception as e:
78
+ st.error(f"Error initializing database: {e}")
79
+ return None, "Failed to initialize database."
80
+
81
+ def initialize_LLM(llm_option, llm_temperature, max_tokens, top_k, vector_db):
82
+ try:
83
+ llm_name = list_llm[llm_option]
84
+ qa_chain = initialize_llmchain(llm_name, llm_temperature, max_tokens, top_k, vector_db)
85
+ if qa_chain is None:
86
+ return None, "Failed to initialize QA chain."
87
+ return qa_chain, "QA chain initialized. Chatbot is ready!"
88
+ except Exception as e:
89
+ st.error(f"Error initializing LLM: {e}")
90
+ return None, "Failed to initialize LLM."
91
+
92
+ def format_chat_history(chat_history):
93
+ formatted_chat_history = []
94
+ for user_message, bot_message in chat_history:
95
+ formatted_chat_history.append(f"User: {user_message}")
96
+ formatted_chat_history.append(f"Assistant: {bot_message}")
97
+ return formatted_chat_history
98
+
99
+ def conversation(qa_chain, message, history):
100
+ try:
101
+ formatted_chat_history = format_chat_history(history)
102
+ response = qa_chain.invoke({"question": message, "chat_history": formatted_chat_history})
103
+ response_answer = response["answer"]
104
+ if "Helpful Answer:" in response_answer:
105
+ response_answer = response_answer.split("Helpful Answer:")[-1]
106
+ response_sources = response["source_documents"]
107
+ response_source1 = response_sources[0].page_content.strip()
108
+ response_source1_page = response_sources[0].metadata["page"] + 1
109
+ response_source2 = response_sources[1].page_content.strip()
110
+ response_source2_page = response_sources[1].metadata["page"] + 1
111
+ response_source3 = response_sources[2].page_content.strip()
112
+ response_source3_page = response_sources[2].metadata["page"] + 1
113
+ new_history = history + [(message, response_answer)]
114
+ return qa_chain, new_history, response_source1, response_source1_page, response_source2, response_source2_page, response_source3, response_source3_page
115
+ except Exception as e:
116
+ st.error(f"Error in conversation: {e}")
117
+ return qa_chain, history, "", 0, "", 0, "", 0
118
+
119
+ def main():
120
+ st.title("PDF Chatbot")
121
+
122
+ st.markdown("### Step 1 - Upload PDF documents and Initialize RAG pipeline")
123
+ uploaded_files = st.file_uploader("Upload PDF documents", type="pdf", accept_multiple_files=True)
124
+
125
+ if uploaded_files:
126
+ if st.button("Create vector database"):
127
+ with st.spinner("Creating vector database..."):
128
+ vector_db, db_message = initialize_database(uploaded_files)
129
+ st.success(db_message)
130
+
131
+ if 'vector_db' not in st.session_state:
132
+ st.session_state['vector_db'] = None
133
+
134
+ if 'qa_chain' not in st.session_state:
135
+ st.session_state['qa_chain'] = None
136
+
137
+ st.markdown("### Select Large Language Model (LLM) and input parameters")
138
+ llm_option = st.radio("Available LLMs", list_llm_simple)
139
+ temperature = st.slider("Temperature", 0.01, 1.0, 0.5, 0.1)
140
+ max_tokens = st.slider("Max New Tokens", 128, 9192, 4096, 128)
141
+ top_k = st.slider("top-k", 1, 10, 3, 1)
142
+
143
+ if st.button("Initialize Question Answering Chatbot"):
144
+ with st.spinner("Initializing QA chatbot..."):
145
+ qa_chain, llm_message = initialize_LLM(list_llm_simple.index(llm_option), temperature, max_tokens, top_k, st.session_state['vector_db'])
146
+ st.session_state['qa_chain'] = qa_chain
147
+ st.success(llm_message)
148
+
149
+ st.markdown("### Step 2 - Chat with your Document")
150
+ if st.session_state['qa_chain']:
151
+ history = []
152
+ message = st.text_input("Ask a question")
153
+
154
+ if st.button("Submit"):
155
+ with st.spinner("Generating response..."):
156
+ qa_chain, history, response_source1, source1_page, response_source2, source2_page, response_source3, source3_page = conversation(st.session_state['qa_chain'], message, history)
157
+ st.session_state['qa_chain'] = qa_chain
158
+
159
+ st.markdown("### Chatbot Response")
160
+ st.text_area("Chatbot Response", value=response_source1, height=100)
161
+ st.text_area("Source 1", value=response_source1, height=100)
162
+ st.text(f"Page: {source1_page}")
163
+ st.text_area("Source 2", value=response_source2, height=100)
164
+ st.text(f"Page: {source2_page}")
165
+ st.text_area("Source 3", value=response_source3, height=100)
166
+ st.text(f"Page: {source3_page}")
167
+
168
+ if __name__ == "__main__":
169
+ main()