Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -128,16 +128,16 @@ def conversation(qa_chain, message, history):
|
|
128 |
return qa_chain, history, "", 0, "", 0, "", 0
|
129 |
|
130 |
def main():
|
131 |
-
st.title("PDF Chatbot")
|
132 |
|
133 |
-
st.markdown("### Step 1 - Upload PDF documents and Initialize RAG pipeline")
|
134 |
-
uploaded_files = st.file_uploader("Upload PDF documents", type="pdf", accept_multiple_files=True)
|
135 |
|
136 |
if uploaded_files:
|
137 |
-
if st.button("Create vector database"):
|
138 |
with st.spinner("Creating vector database..."):
|
139 |
vector_db, db_message = initialize_database(uploaded_files)
|
140 |
-
st.success(db_message)
|
141 |
st.session_state['vector_db'] = vector_db
|
142 |
|
143 |
if 'vector_db' not in st.session_state:
|
@@ -146,16 +146,17 @@ def main():
|
|
146 |
if 'qa_chain' not in st.session_state:
|
147 |
st.session_state['qa_chain'] = None
|
148 |
|
149 |
-
st.markdown("### Select Large Language Model (LLM) and input parameters")
|
150 |
-
llm_option = st.radio("Available LLMs", list_llm_simple)
|
151 |
|
152 |
-
if st.button("Initialize Question Answering Chatbot"):
|
153 |
with st.spinner("Initializing QA chatbot..."):
|
154 |
qa_chain, llm_message = initialize_LLM(list_llm_simple.index(llm_option), st.session_state['vector_db'])
|
155 |
st.session_state['qa_chain'] = qa_chain
|
156 |
-
st.success(llm_message)
|
|
|
|
|
157 |
|
158 |
-
st.markdown("### Step 2 - Chat with your Document")
|
159 |
if st.session_state['qa_chain']:
|
160 |
history = []
|
161 |
message = st.text_input("Ask a question")
|
|
|
128 |
return qa_chain, history, "", 0, "", 0, "", 0
|
129 |
|
130 |
def main():
|
131 |
+
st.sidebar.title("PDF Chatbot")
|
132 |
|
133 |
+
st.sidebar.markdown("### Step 1 - Upload PDF documents and Initialize RAG pipeline")
|
134 |
+
uploaded_files = st.sidebar.file_uploader("Upload PDF documents", type="pdf", accept_multiple_files=True)
|
135 |
|
136 |
if uploaded_files:
|
137 |
+
if st.sidebar.button("Create vector database"):
|
138 |
with st.spinner("Creating vector database..."):
|
139 |
vector_db, db_message = initialize_database(uploaded_files)
|
140 |
+
st.sidebar.success(db_message)
|
141 |
st.session_state['vector_db'] = vector_db
|
142 |
|
143 |
if 'vector_db' not in st.session_state:
|
|
|
146 |
if 'qa_chain' not in st.session_state:
|
147 |
st.session_state['qa_chain'] = None
|
148 |
|
149 |
+
st.sidebar.markdown("### Select Large Language Model (LLM) and input parameters")
|
150 |
+
llm_option = st.sidebar.radio("Available LLMs", list_llm_simple)
|
151 |
|
152 |
+
if st.sidebar.button("Initialize Question Answering Chatbot"):
|
153 |
with st.spinner("Initializing QA chatbot..."):
|
154 |
qa_chain, llm_message = initialize_LLM(list_llm_simple.index(llm_option), st.session_state['vector_db'])
|
155 |
st.session_state['qa_chain'] = qa_chain
|
156 |
+
st.sidebar.success(llm_message)
|
157 |
+
|
158 |
+
st.title("Chat with your Document")
|
159 |
|
|
|
160 |
if st.session_state['qa_chain']:
|
161 |
history = []
|
162 |
message = st.text_input("Ask a question")
|