SharmaAmit1818 commited on
Commit
3f49524
·
verified ·
1 Parent(s): e825e23

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +46 -0
app.py ADDED
@@ -0,0 +1,46 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import pandas as pd
3
+ from transformers import BertTokenizer, BertForSequenceClassification
4
+ import torch
5
+
6
+ # Load pre-trained TinyBERT model and tokenizer
7
+ tokenizer = BertTokenizer.from_pretrained('huawei-noah/TinyBERT_General_4L_312D')
8
+ model = BertForSequenceClassification.from_pretrained('huawei-noah/TinyBERT_General_4L_312D')
9
+
10
+ # Function to process the CSV file and generate predictions
11
+ def process_csv(file):
12
+ # Read the CSV file
13
+ df = pd.read_csv(file)
14
+
15
+ # Ensure the CSV has a 'text' column
16
+ if 'text' not in df.columns:
17
+ return "Error: The CSV file must contain a 'text' column."
18
+
19
+ # Tokenize the input text
20
+ inputs = tokenizer(df['text'].tolist(), return_tensors='pt', padding=True, truncation=True)
21
+
22
+ # Perform inference
23
+ with torch.no_grad():
24
+ outputs = model(**inputs)
25
+
26
+ # Get predicted classes
27
+ _, predicted_classes = torch.max(outputs.logits, dim=1)
28
+ df['predicted_class'] = predicted_classes.numpy()
29
+
30
+ # Return the processed DataFrame as a CSV string
31
+ return df.to_csv(index=False)
32
+
33
+ # Create the Gradio interface
34
+ input_csv = gr.File(label="Upload CSV File")
35
+ output_csv = gr.File(label="Download Processed CSV")
36
+
37
+ demo = gr.Interface(
38
+ fn=process_csv,
39
+ inputs=input_csv,
40
+ outputs=output_csv,
41
+ title="CSV Data Processing with TinyBERT",
42
+ description="Upload a CSV file with a 'text' column, and the model will process the data and provide predictions."
43
+ )
44
+
45
+ # Launch the Gradio interface
46
+ demo.launch()