ml_fiesta / app.py
ShashankSS1205's picture
dataset added
d675cd3
import gradio as gr
from pydub import AudioSegment
import numpy as np
import pandas as pd
from sentence_transformers import SentenceTransformer
import whisper
# Load the model (choose "tiny", "base", "small", "medium", or "large")
audio_model = whisper.load_model("large", device='cpu')
# Load the model
sentence_model = SentenceTransformer("sentence-transformers/all-MiniLM-L6-v2")
# Simulated DataFrame containing chunk paths and transcriptions for demo
# Replace with your actual data
df_mapping = pd.read_csv('audio_chunk_mapping_with_transcription_embeddings.csv')
# Function to process the input audio and retrieve the most similar audio chunk
def process_and_find_audio(audio_file):
# Load audio from the file path
audio_path = "./temp_audio.wav" # Path to temporarily save audio if needed
sample_rate,audio_np = audio_file
# Save the numpy array as an audio file if you need to pass it to the Whisper model
audio_segment = AudioSegment(
audio_np.tobytes(),
frame_rate=sample_rate, # Set the frame rate as appropriate
sample_width=2, # Assuming 16-bit samples (adjust if necessary)
channels=1 # Assuming mono channel (adjust if necessary)
)
# audio_file = audio_path
# audio_segment.export(audio_file, format="wav")
# Save the audio to a temporary file
audio_segment.export(audio_path, format="wav")
# audio_path = audio_file.name
transcription = audio_model.transcribe(audio_path, task="translate")['text']
# Compute embeddings for database transcriptions and user transcription
# sentences = df_mapping['transcription'].tolist()
# embeddings = model.encode(sentences)
embeddings = df_mapping.iloc[:, 4:].to_numpy().astype('float32')
embedding_query = sentence_model.encode(transcription)
# Find the most similar transcription
similarities = sentence_model.similarity(embeddings, embedding_query)
index_of_most_similar_item = int(similarities.argmax())
# Retrieve the matching audio chunk path and transcription
matched_chunk_path = df_mapping.loc[index_of_most_similar_item, "chunk_path"]
matched_chunk_text = df_mapping.loc[index_of_most_similar_item, "transcription"]
print(matched_chunk_path, matched_chunk_text)
# Return the text and audio data
return matched_chunk_text, matched_chunk_path
# return matched_chunk_text, (matched_audio_segment.frame_rate, matched_audio_np)
# Set up the Gradio interface
with gr.Blocks() as demo:
gr.Markdown("### Upload an audio file and retrieve the most similar database audio.")
# Use gr.File for file upload and define text + audio outputs
# audio_input = gr.File(label="Upload Your Audio")
mic = gr.Audio(type="numpy", label="Record Your Audio")
output_text = gr.Textbox(label="Matched Transcription")
output_audio = gr.Audio(label="Matched Audio Playback")
# Link the function to Gradio inputs and outputs
# audio_input.change(process_and_find_audio, inputs=audio_input, outputs=[output_text, output_audio])
mic.change(process_and_find_audio, inputs=mic, outputs=[output_text, output_audio])
# Launch the app
demo.launch(share=True)
# import gradio as gr
# from pydub import AudioSegment
# import numpy as np
# from io import BytesIO
# # Simulated function to fetch audio from a "database"
# def get_audio_from_database():
# # Replace with actual database retrieval logic
# return "/home/shashank/Desktop/ml_fiest/Dataset/SandalWoodNewsStories_2.mp3" # Example path to an audio file
# # Define the function that takes the user-recorded audio and returns database audio
# def process_audio(user_audio):
# # Process the user audio if needed
# # Here we’re just passing it through without saving for demonstration purposes
# # Get the database audio
# db_audio_path = get_audio_from_database()
# db_audio_segment = AudioSegment.from_file(db_audio_path)
# # Convert db audio to numpy array and sample rate
# buffer = BytesIO()
# db_audio_segment.export(buffer, format="wav")
# buffer.seek(0)
# db_audio = np.frombuffer(buffer.read(), dtype=np.int16)
# # Return the database audio as a response
# return (db_audio_segment.frame_rate, db_audio)
# # Set up the Gradio interface
# with gr.Blocks() as demo:
# gr.Markdown("### Record your audio and play a sample from the database.")
# # Define microphone input and audio output without `source` argument
# mic = gr.Audio(type="numpy", label="Record Your Audio")
# output_audio = gr.Audio(label="Database Audio Response")
# # Connect the function with Gradio components
# mic.change(process_audio, inputs=mic, outputs=output_audio)
# # Launch the app
# demo.launch(share=True)