Spaces:
Runtime error
Runtime error
File size: 5,967 Bytes
a320d56 723f467 a320d56 723f467 a320d56 723f467 a320d56 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 |
import gradio as gr
import random
import time
from langchain.llms import OpenAI, OpenAIChat
from langchain.chat_models import ChatOpenAI
from langchain.embeddings import HuggingFaceEmbeddings
from langchain.vectorstores import Pinecone
from langchain.chains.retrieval_qa.base import RetrievalQA
from langchain.chains.question_answering import load_qa_chain
import pinecone
import os
os.environ["TOKENIZERS_PARALLELISM"] = "false"
OPENAI_KEY = ""
OPENAI_TEMP = 0
PINECONE_KEY = os.environ["PINECONE_KEY"]
PINECONE_ENV = "asia-northeast1-gcp"
PINECONE_INDEX = "3gpp"
# return top-k text chunk from vector store
VECTOR_SEARCH_TOP_K = 10
# LLM input history length
LLM_HISTORY_LEN = 3
BUTTON_MIN_WIDTH = 150
MODEL_STATUS = "Wait for API Key to Initialize."
MODEL_LOADED = "Model Loaded"
MODEL_WARNING = "Please paste your OpenAI API Key from openai.com to initialize this application!"
webui_title = """
# 3GPP OpenAI Chatbot for Hackathon Demo
"""
init_message = """Welcome to use 3GPP Chatbot
This demo toolkit is based on OpenAI with langchain and pinecone
Please insert your question and click 'Submit'
"""
def init_model(openai_key):
try:
os.environ["OPENAI_API_KEY"] = openai_key
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2")
pinecone.init(api_key = PINECONE_KEY,
environment = PINECONE_ENV)
llm = OpenAI(temperature=OPENAI_TEMP,
model_name="gpt-3.5-turbo-0301")
# ChatOpenAI(temperature = OPENAI_TEMP, openai_api_key = openai_key)
global db
db = Pinecone.from_existing_index(index_name = PINECONE_INDEX,
embedding = embeddings)
global chain
chain = load_qa_chain(llm, chain_type="stuff")
global MODEL_STATUS
MODEL_STATUS = MODEL_LOADED
return openai_key, ""
except Exception as e:
print(e)
return "",""
def get_chat_history(inputs) -> str:
res = []
for human, ai in inputs:
res.append(f"Human: {human}\nAI: {ai}")
return "\n".join(res)
css = """.bigbox {
min-height:200px;
}"""
with gr.Blocks(css=css) as demo:
gr.Markdown(webui_title)
gr.Markdown(init_message)
if OPENAI_KEY and OPENAI_KEY.startswith("sk-") and len(OPENAI_KEY) > 50:
api_textbox_ph = "API Founded in Environment Variable: sk-..." + OPENAI_KEY[-4:]
api_textbox_edit = False
init_model(OPENAI_KEY)
else:
api_textbox_ph = "Paste Your OpenAI API Key (sk-...) and Hit ENTER"
api_textbox_edit = True
api_textbox = gr.Textbox(placeholder = api_textbox_ph,
interactive = api_textbox_edit,
show_label=False, lines=1, type='password')
with gr.Tab("Chatbot"):
with gr.Row():
with gr.Column(scale=10):
chatbot = gr.Chatbot(elem_classes="bigbox")
'''
with gr.Column(scale=1, min_width=BUTTON_MIN_WIDTH):
temp = gr.Slider(0,
2,
value=OPENAI_TEMP,
step=0.1,
label="temperature",
interactive=True)
init = gr.Button("Init")
'''
with gr.Row():
with gr.Column(scale=10):
query = gr.Textbox(label="Question:",
lines=2)
ref = gr.Textbox(label="Reference(optional):")
with gr.Column(scale=1, min_width=BUTTON_MIN_WIDTH):
clear = gr.Button("Clear")
submit = gr.Button("Submit",variant="primary")
with gr.Tab("Details"):
top_k = gr.Slider(1,
20,
value=VECTOR_SEARCH_TOP_K,
step=1,
label="Vector similarity top_k",
interactive=True)
detail_panel = gr.Chatbot(label="Related Docs")
def user(user_message, history):
return "", history+[[user_message, None]]
def bot(box_message, ref_message, top_k):
if MODEL_STATUS != MODEL_LOADED:
box_message[-1][1] = MODEL_WARNING
return box_message, "", ""
# bot_message = random.choice(["Yes", "No"])
# 0 is user question, 1 is bot response
question = box_message[-1][0]
history = box_message[:-1]
if not ref_message:
ref_message = question
details = f"Q: {question}"
else:
details = f"Q: {question}\nR: {ref_message}"
#print(question, ref_message)
#print(history)
#print(get_chat_history(history))
docsearch = db.as_retriever(search_kwargs={'k':top_k})
docs = docsearch.get_relevant_documents(ref_message)
all_output = chain({"input_documents": docs,
"question": question,
"chat_history": get_chat_history(history)})
bot_message = all_output['output_text']
#print(docs)
source = "".join([f"""<details> <summary>{doc.metadata["source"]}</summary>
{doc.page_content}
</details>""" for i, doc in enumerate(docs)])
#print(source)
box_message[-1][1] = bot_message
return box_message, "", [[details, source]]
submit.click(user, [query, chatbot], [query, chatbot], queue=False).then(
bot, [chatbot, ref, top_k], [chatbot, ref, detail_panel]
)
api_textbox.submit(init_model, api_textbox, [api_textbox, chatbot])
clear.click(lambda: (None,None,None), None, [query, ref, chatbot], queue=False)
if __name__ == "__main__":
demo.launch(share=False, inbrowser=True)
|