File size: 6,394 Bytes
a320d56
 
 
 
 
 
 
9da0ae1
a320d56
 
 
 
 
 
 
9da0ae1
 
a320d56
99b9f14
a320d56
 
 
 
99b9f14
 
a320d56
 
 
 
 
 
 
 
 
52901ff
 
 
 
 
 
 
 
 
a320d56
9da0ae1
a320d56
 
 
 
 
 
 
 
 
 
 
 
 
9da0ae1
a320d56
9da0ae1
 
99b9f14
a320d56
9da0ae1
 
a320d56
9da0ae1
a320d56
9da0ae1
 
 
 
 
 
 
a320d56
52901ff
9da0ae1
52901ff
a320d56
 
52901ff
 
a320d56
 
 
 
 
 
 
9da0ae1
 
a320d56
9da0ae1
 
 
 
 
 
a320d56
9da0ae1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a320d56
 
 
9da0ae1
52901ff
 
 
 
 
 
 
 
 
 
 
 
a320d56
9da0ae1
a320d56
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9da0ae1
 
52901ff
9da0ae1
 
52901ff
a320d56
9da0ae1
 
 
 
 
 
 
a320d56
9da0ae1
a320d56
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
import gradio as gr
import random
import time

from langchain.chat_models import ChatOpenAI
from langchain.embeddings import HuggingFaceEmbeddings
from langchain.vectorstores import Pinecone
from langchain.chains import LLMChain
from langchain.chains.retrieval_qa.base import RetrievalQA
from langchain.chains.question_answering import load_qa_chain
import pinecone

import os
os.environ["TOKENIZERS_PARALLELISM"] = "false"

#OPENAI_API_KEY = ""
OPENAI_API_KEY = os.environ.get("OPENAI_API_KEY", "")
OPENAI_TEMP  = 0

PINECONE_KEY = os.environ["PINECONE_KEY"]
PINECONE_ENV = "asia-northeast1-gcp"
PINECONE_INDEX = "3gpp"

EMBEDDING_MODEL = "sentence-transformers/all-mpnet-base-v2"

# return top-k text chunk from vector store
VECTOR_SEARCH_TOP_K = 10

# LLM input history length
LLM_HISTORY_LEN = 3


BUTTON_MIN_WIDTH = 150

STATUS_NOK = "404-MODEL UNREADY-red"
STATUS_OK  = "200-MODEL LOADED-brightgreen"

def get_status(inputs) -> str:
    return f"""<img src="https://img.shields.io/badge/{inputs}?style=flat"></a>"""
    

MODEL_NULL = get_status(STATUS_NOK)
MODEL_DONE = get_status(STATUS_OK)

MODEL_WARNING = "Please paste your OpenAI API Key from openai.com and press 'Enter' to initialize this application!"


webui_title = """
# 3GPP OpenAI Chatbot for Hackathon Demo

"""

init_message = """Welcome to use 3GPP Chatbot
This demo toolkit is based on OpenAI with langchain and pinecone
Please insert your question and click 'Submit'
"""


def init_model(api_key):
    try:
        if api_key and api_key.startswith("sk-") and len(api_key) > 50:
            
            embeddings = HuggingFaceEmbeddings(model_name=EMBEDDING_MODEL)

            pinecone.init(api_key     = PINECONE_KEY,
                          environment = PINECONE_ENV)

            #llm = OpenAI(temperature=OPENAI_TEMP, model_name="gpt-3.5-turbo-0301")

            llm = ChatOpenAI(temperature = OPENAI_TEMP,
                             openai_api_key = api_key)

            chain = load_qa_chain(llm, chain_type="stuff")

            db = Pinecone.from_existing_index(index_name = PINECONE_INDEX,
                                              embedding  = embeddings)

            return api_key, MODEL_DONE, chain, db, None
        else:
            return None,MODEL_NULL,None,None,None
    except Exception as e:
        print(e)
        return None,MODEL_NULL,None,None,None


def get_chat_history(inputs) -> str:
    res = []
    for human, ai in inputs:
        res.append(f"Human: {human}\nAI: {ai}")
    return "\n".join(res)

def user(user_message, history):
    return "", history+[[user_message, None]]

def bot(box_message, ref_message, chain, db, top_k):

    # bot_message = random.choice(["Yes", "No"])
    # 0 is user question, 1 is bot response
    question = box_message[-1][0]
    history  = box_message[:-1]
    
    if (not chain) or (not db):
        box_message[-1][1] = MODEL_WARNING
        return box_message, "", ""

    if not ref_message:
        ref_message = question
        details = f"Q:  {question}"
    else:
        details = f"Q:  {question}\nR: {ref_message}"

    docsearch = db.as_retriever(search_kwargs={'k':top_k})
    docs = docsearch.get_relevant_documents(ref_message)


    all_output = chain({"input_documents": docs,
                        "question": question,
                        "chat_history": get_chat_history(history)})

    bot_message = all_output['output_text']


    source = "".join([f"""<details> <summary>{doc.metadata["source"]}</summary>
{doc.page_content}

</details>""" for i, doc in enumerate(docs)])

    #print(source)

    box_message[-1][1] = bot_message
    return box_message, "", [[details, source]]


with gr.Blocks(css=""".bigbox {
    min-height:200px;
}""") as demo:
    llm_chain = gr.State()
    vector_db = gr.State()
    gr.Markdown(webui_title)
    gr.Markdown(init_message)
    
    with gr.Row():
        with gr.Column(scale=9):
            api_textbox = gr.Textbox(
                label = "OpenAI API Key",
                value = OPENAI_API_KEY,
                placeholder = "Paste Your OpenAI API Key (sk-...) and Hit ENTER",
                lines=1,
                type='password')
            
        with gr.Column(scale=1, min_width=BUTTON_MIN_WIDTH):
            
            init = gr.Button("Initialize Model").style(full_width=False)
            model_statusbox = gr.HTML(MODEL_NULL)
    
    with gr.Tab("3GPP-Chatbot"):
        with gr.Row():
            with gr.Column(scale=10):
                chatbot = gr.Chatbot(elem_classes="bigbox")
            '''
            with gr.Column(scale=1, min_width=BUTTON_MIN_WIDTH):
                temp = gr.Slider(0,
                          2,
                          value=OPENAI_TEMP,
                          step=0.1,
                          label="temperature",
                          interactive=True)
                init = gr.Button("Init")
            '''
        with gr.Row():
            with gr.Column(scale=10):
                query = gr.Textbox(label="Question:",
                                   lines=2)
                ref = gr.Textbox(label="Reference(optional):")
            with gr.Column(scale=1, min_width=BUTTON_MIN_WIDTH):
                clear = gr.Button("Clear")
                submit = gr.Button("Submit",variant="primary")
                

    with gr.Tab("Details"):
        top_k = gr.Slider(1,
                          20,
                          value=VECTOR_SEARCH_TOP_K,
                          step=1,
                          label="Vector similarity top_k",
                          interactive=True)
        detail_panel = gr.Chatbot(label="Related Docs")
        
                
    api_textbox.submit(init_model,
                       api_textbox,
                       [api_textbox, model_statusbox, llm_chain, vector_db, chatbot])
    init.click(init_model,
                       api_textbox,
                       [api_textbox, model_statusbox, llm_chain, vector_db, chatbot])
    
    submit.click(user,
                 [query, chatbot],
                 [query, chatbot],
                 queue=False).then(
        bot,
        [chatbot, ref, llm_chain, vector_db, top_k],
        [chatbot, ref, detail_panel]
    )
    
    clear.click(lambda: (None,None,None), None, [query, ref, chatbot], queue=False)

if __name__ == "__main__":
    demo.launch(share=False, inbrowser=True)