Spaces:
Runtime error
Runtime error
File size: 6,394 Bytes
a320d56 9da0ae1 a320d56 9da0ae1 a320d56 99b9f14 a320d56 99b9f14 a320d56 52901ff a320d56 9da0ae1 a320d56 9da0ae1 a320d56 9da0ae1 99b9f14 a320d56 9da0ae1 a320d56 9da0ae1 a320d56 9da0ae1 a320d56 52901ff 9da0ae1 52901ff a320d56 52901ff a320d56 9da0ae1 a320d56 9da0ae1 a320d56 9da0ae1 a320d56 9da0ae1 52901ff a320d56 9da0ae1 a320d56 9da0ae1 52901ff 9da0ae1 52901ff a320d56 9da0ae1 a320d56 9da0ae1 a320d56 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 |
import gradio as gr
import random
import time
from langchain.chat_models import ChatOpenAI
from langchain.embeddings import HuggingFaceEmbeddings
from langchain.vectorstores import Pinecone
from langchain.chains import LLMChain
from langchain.chains.retrieval_qa.base import RetrievalQA
from langchain.chains.question_answering import load_qa_chain
import pinecone
import os
os.environ["TOKENIZERS_PARALLELISM"] = "false"
#OPENAI_API_KEY = ""
OPENAI_API_KEY = os.environ.get("OPENAI_API_KEY", "")
OPENAI_TEMP = 0
PINECONE_KEY = os.environ["PINECONE_KEY"]
PINECONE_ENV = "asia-northeast1-gcp"
PINECONE_INDEX = "3gpp"
EMBEDDING_MODEL = "sentence-transformers/all-mpnet-base-v2"
# return top-k text chunk from vector store
VECTOR_SEARCH_TOP_K = 10
# LLM input history length
LLM_HISTORY_LEN = 3
BUTTON_MIN_WIDTH = 150
STATUS_NOK = "404-MODEL UNREADY-red"
STATUS_OK = "200-MODEL LOADED-brightgreen"
def get_status(inputs) -> str:
return f"""<img src="https://img.shields.io/badge/{inputs}?style=flat"></a>"""
MODEL_NULL = get_status(STATUS_NOK)
MODEL_DONE = get_status(STATUS_OK)
MODEL_WARNING = "Please paste your OpenAI API Key from openai.com and press 'Enter' to initialize this application!"
webui_title = """
# 3GPP OpenAI Chatbot for Hackathon Demo
"""
init_message = """Welcome to use 3GPP Chatbot
This demo toolkit is based on OpenAI with langchain and pinecone
Please insert your question and click 'Submit'
"""
def init_model(api_key):
try:
if api_key and api_key.startswith("sk-") and len(api_key) > 50:
embeddings = HuggingFaceEmbeddings(model_name=EMBEDDING_MODEL)
pinecone.init(api_key = PINECONE_KEY,
environment = PINECONE_ENV)
#llm = OpenAI(temperature=OPENAI_TEMP, model_name="gpt-3.5-turbo-0301")
llm = ChatOpenAI(temperature = OPENAI_TEMP,
openai_api_key = api_key)
chain = load_qa_chain(llm, chain_type="stuff")
db = Pinecone.from_existing_index(index_name = PINECONE_INDEX,
embedding = embeddings)
return api_key, MODEL_DONE, chain, db, None
else:
return None,MODEL_NULL,None,None,None
except Exception as e:
print(e)
return None,MODEL_NULL,None,None,None
def get_chat_history(inputs) -> str:
res = []
for human, ai in inputs:
res.append(f"Human: {human}\nAI: {ai}")
return "\n".join(res)
def user(user_message, history):
return "", history+[[user_message, None]]
def bot(box_message, ref_message, chain, db, top_k):
# bot_message = random.choice(["Yes", "No"])
# 0 is user question, 1 is bot response
question = box_message[-1][0]
history = box_message[:-1]
if (not chain) or (not db):
box_message[-1][1] = MODEL_WARNING
return box_message, "", ""
if not ref_message:
ref_message = question
details = f"Q: {question}"
else:
details = f"Q: {question}\nR: {ref_message}"
docsearch = db.as_retriever(search_kwargs={'k':top_k})
docs = docsearch.get_relevant_documents(ref_message)
all_output = chain({"input_documents": docs,
"question": question,
"chat_history": get_chat_history(history)})
bot_message = all_output['output_text']
source = "".join([f"""<details> <summary>{doc.metadata["source"]}</summary>
{doc.page_content}
</details>""" for i, doc in enumerate(docs)])
#print(source)
box_message[-1][1] = bot_message
return box_message, "", [[details, source]]
with gr.Blocks(css=""".bigbox {
min-height:200px;
}""") as demo:
llm_chain = gr.State()
vector_db = gr.State()
gr.Markdown(webui_title)
gr.Markdown(init_message)
with gr.Row():
with gr.Column(scale=9):
api_textbox = gr.Textbox(
label = "OpenAI API Key",
value = OPENAI_API_KEY,
placeholder = "Paste Your OpenAI API Key (sk-...) and Hit ENTER",
lines=1,
type='password')
with gr.Column(scale=1, min_width=BUTTON_MIN_WIDTH):
init = gr.Button("Initialize Model").style(full_width=False)
model_statusbox = gr.HTML(MODEL_NULL)
with gr.Tab("3GPP-Chatbot"):
with gr.Row():
with gr.Column(scale=10):
chatbot = gr.Chatbot(elem_classes="bigbox")
'''
with gr.Column(scale=1, min_width=BUTTON_MIN_WIDTH):
temp = gr.Slider(0,
2,
value=OPENAI_TEMP,
step=0.1,
label="temperature",
interactive=True)
init = gr.Button("Init")
'''
with gr.Row():
with gr.Column(scale=10):
query = gr.Textbox(label="Question:",
lines=2)
ref = gr.Textbox(label="Reference(optional):")
with gr.Column(scale=1, min_width=BUTTON_MIN_WIDTH):
clear = gr.Button("Clear")
submit = gr.Button("Submit",variant="primary")
with gr.Tab("Details"):
top_k = gr.Slider(1,
20,
value=VECTOR_SEARCH_TOP_K,
step=1,
label="Vector similarity top_k",
interactive=True)
detail_panel = gr.Chatbot(label="Related Docs")
api_textbox.submit(init_model,
api_textbox,
[api_textbox, model_statusbox, llm_chain, vector_db, chatbot])
init.click(init_model,
api_textbox,
[api_textbox, model_statusbox, llm_chain, vector_db, chatbot])
submit.click(user,
[query, chatbot],
[query, chatbot],
queue=False).then(
bot,
[chatbot, ref, llm_chain, vector_db, top_k],
[chatbot, ref, detail_panel]
)
clear.click(lambda: (None,None,None), None, [query, ref, chatbot], queue=False)
if __name__ == "__main__":
demo.launch(share=False, inbrowser=True)
|