Spaces:
Build error
Build error
Upload 5 files
Browse files- .env +0 -0
- .gitattributes +1 -0
- audio-to-text.py +101 -0
- audio.wav +0 -0
- recording0.wav +3 -0
- requirements.txt +0 -0
.env
ADDED
Binary file (138 Bytes). View file
|
|
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
recording0.wav filter=lfs diff=lfs merge=lfs -text
|
audio-to-text.py
ADDED
@@ -0,0 +1,101 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import streamlit as st
|
3 |
+
import whisper
|
4 |
+
from dotenv import load_dotenv
|
5 |
+
from langchain.chains import RetrievalQA
|
6 |
+
from audiorecorder import audiorecorder
|
7 |
+
from langchain.document_loaders import DirectoryLoader
|
8 |
+
from langchain.embeddings import OpenAIEmbeddings
|
9 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
10 |
+
from langchain.vectorstores.faiss import FAISS
|
11 |
+
from langchain.chat_models import ChatOpenAI
|
12 |
+
|
13 |
+
load_dotenv()
|
14 |
+
|
15 |
+
api_key = os.getenv("OPENAI_API_KEY")
|
16 |
+
|
17 |
+
st.title("Avtarcoach Audio-to-text")
|
18 |
+
|
19 |
+
# audio_bytes = audio_recorder("Click to record", "Click to stop recording", neutral_color="#051082", icon_size="2x")
|
20 |
+
# if audio_bytes:
|
21 |
+
# st.audio(audio_bytes, format="audio/wav")
|
22 |
+
|
23 |
+
audio = audiorecorder("Click to record", "Click to stop recording")
|
24 |
+
|
25 |
+
if len(audio) > 0:
|
26 |
+
# To play audio in frontend:
|
27 |
+
st.audio(audio.export().read())
|
28 |
+
|
29 |
+
# To save audio to a file, use pydub export method:
|
30 |
+
audio.export("audio.wav", format="wav")
|
31 |
+
|
32 |
+
# To get audio properties, use pydub AudioSegment properties:
|
33 |
+
st.write(
|
34 |
+
f"Frame rate: {audio.frame_rate}, Frame width: {audio.frame_width}, Duration: {audio.duration_seconds} seconds")
|
35 |
+
|
36 |
+
model = whisper.load_model("base")
|
37 |
+
|
38 |
+
# load audio and pad/trim it to fit 30 seconds
|
39 |
+
audio = whisper.load_audio(r"audio.wav")
|
40 |
+
audio = whisper.pad_or_trim(audio)
|
41 |
+
|
42 |
+
# make log-Mel spectrogram and move to the same device as the model
|
43 |
+
mel = whisper.log_mel_spectrogram(audio).to(model.device)
|
44 |
+
|
45 |
+
# detect the spoken language
|
46 |
+
_, probs = model.detect_language(mel)
|
47 |
+
st.write(f"Detected language: {max(probs, key=probs.get)}")
|
48 |
+
|
49 |
+
# decode the audio
|
50 |
+
options = whisper.DecodingOptions(fp16=False)
|
51 |
+
result = whisper.decode(model, mel, options)
|
52 |
+
|
53 |
+
# print the recognized text
|
54 |
+
st.write("You Said: ", result.text)
|
55 |
+
input_text = result.text
|
56 |
+
|
57 |
+
st.markdown("""<hr style="height:10px;border:none;color:#333;background-color:#333;" /> """, unsafe_allow_html=True)
|
58 |
+
|
59 |
+
st.write("Avtarcoach Response: ")
|
60 |
+
|
61 |
+
# Gen AI results
|
62 |
+
|
63 |
+
pdf_loader = DirectoryLoader(
|
64 |
+
r'C:\Users\shpe1\Downloads\tea_project_text_to_text-main\tea_project_text_to_text-main\pdf_docs', glob="**/*.pdf",
|
65 |
+
use_multithreading=True)
|
66 |
+
docs_loader = DirectoryLoader(
|
67 |
+
r'C:\Users\shpe1\Downloads\tea_project_text_to_text-main\tea_project_text_to_text-main\docs', glob="**/*.docx",
|
68 |
+
use_multithreading=True)
|
69 |
+
csv_loader = DirectoryLoader(
|
70 |
+
r'C:\Users\shpe1\Downloads\tea_project_text_to_text-main\tea_project_text_to_text-main\docs', glob="**/*.csv",
|
71 |
+
use_multithreading=True)
|
72 |
+
xlsx_loader = DirectoryLoader(
|
73 |
+
r'C:\Users\shpe1\Downloads\tea_project_text_to_text-main\tea_project_text_to_text-main\docs', glob="**/*.xlsx",
|
74 |
+
use_multithreading=True)
|
75 |
+
loaders = [pdf_loader, docs_loader, csv_loader, xlsx_loader]
|
76 |
+
|
77 |
+
documents = []
|
78 |
+
for loader in loaders:
|
79 |
+
documents.extend(loader.load())
|
80 |
+
|
81 |
+
text_splitters = RecursiveCharacterTextSplitter(
|
82 |
+
chunk_size=2000,
|
83 |
+
chunk_overlap=200,
|
84 |
+
length_function=len
|
85 |
+
)
|
86 |
+
|
87 |
+
chunks = text_splitters.split_documents(documents)
|
88 |
+
embedding = OpenAIEmbeddings()
|
89 |
+
# db = FAISS.from_documents(chunks, embedding)
|
90 |
+
faiss_db = FAISS.from_documents(chunks, embedding)
|
91 |
+
retriever = faiss_db.as_retriever(search_type='mmr')
|
92 |
+
llm = ChatOpenAI(model="gpt-4-1106-preview", temperature=0)
|
93 |
+
qa_chain = RetrievalQA.from_chain_type(llm=llm, chain_type="stuff", retriever=retriever)
|
94 |
+
|
95 |
+
# doc_search =faiss_db.get_relevant_documents(input_text)
|
96 |
+
# llm = ChatOpenAI(model="gpt-4-1106-preview",temperature =0)
|
97 |
+
# qa_chain = load_qa_chain(llm=llm,chain_type="stuff")
|
98 |
+
# qa_document_chain = AnalyzeDocumentChain(combine_docs_chain=qa_chain)
|
99 |
+
response = qa_chain.run(input_text)
|
100 |
+
|
101 |
+
st.write(response)
|
audio.wav
ADDED
Binary file (829 kB). View file
|
|
recording0.wav
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4ef40337ebb5b111c40947a994d0ea0ef0412e27623e8fe6353b316208db255d
|
3 |
+
size 5760058
|
requirements.txt
ADDED
Binary file (6.38 kB). View file
|
|