Spaces:
Running
Running
import streamlit as st | |
import torch | |
import os | |
# Load the model checkpoint | |
model_path = "https://huggingface.co/SLPG/English_to_Urdu_Unsupervised_MT/tree/main/checkpoint_8_96000.pt" | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
# Define a function to load the model | |
def load_model(model_path): | |
model = torch.load(model_path, map_location=device) | |
model.eval() | |
return model | |
# Load the dictionaries | |
def load_dictionary(dict_path): | |
with open(dict_path, 'r') as file: | |
dictionary = {line.split()[0]: i for i, line in enumerate(file.readlines())} | |
return dictionary | |
# Translation function | |
def translate(model, input_text, src_dict, tgt_dict): | |
# Implement the logic to translate using your model | |
# This is a placeholder, modify according to your model's requirements | |
translated_text = "Translated text here" | |
return translated_text | |
# Load model and dictionaries | |
model = load_model(model_path) | |
src_dict = load_dictionary("SLPG/English_to_Urdu_Unsupervised_MT/dict.en.txt") | |
tgt_dict = load_dictionary("SLPG/English_to_Urdu_Unsupervised_MT/dict.ur.txt") | |
# Streamlit interface | |
st.title("Translation Model Inference") | |
input_text = st.text_area("Enter text to translate", "") | |
if st.button("Translate"): | |
if input_text: | |
translated_text = translate(model, input_text, src_dict, tgt_dict) | |
st.write(f"Translated Text: {translated_text}") | |
else: | |
st.write("Please enter text to translate.") | |