Spaces:
Sleeping
Sleeping
import streamlit as st | |
import torch | |
from fairseq.models.transformer import TransformerModel | |
import os | |
import requests | |
# Define the URLs of your model and dictionary files | |
model_url = "https://huggingface.co/SLPG/English_to_Urdu_Unsupervised_MT/resolve/main/checkpoint_8_96000.pt" | |
dict_en_url = "https://huggingface.co/SLPG/English_to_Urdu_Unsupervised_MT/resolve/main/dict.en.txt" | |
dict_ur_url = "https://huggingface.co/SLPG/English_to_Urdu_Unsupervised_MT/resolve/main/dict.ur.txt" | |
# Define the paths to save the downloaded files | |
model_path = "sent_iwslt-bt-enur_42.pt" | |
dict_en_path = "dict.en.txt" | |
dict_ur_path = "dict.ur.txt" | |
# Define a function to download files | |
def download_file(url, file_path): | |
if not os.path.exists(file_path): | |
with requests.get(url, stream=True) as r: | |
r.raise_for_status() | |
with open(file_path, 'wb') as f: | |
for chunk in r.iter_content(chunk_size=8192): | |
f.write(chunk) | |
return file_path | |
# Download the model and dictionary files | |
download_file(model_url, model_path) | |
download_file(dict_en_url, dict_en_path) | |
download_file(dict_ur_url, dict_ur_path) | |
# Load the model | |
en_ur_model = TransformerModel.from_pretrained( | |
'.', | |
checkpoint_file=model_path, | |
data_name_or_path='.' | |
) | |
# Streamlit interface | |
st.title("Translation Model Inference") | |
input_text = st.text_area("Enter text to translate", "") | |
if st.button("Translate"): | |
if input_text: | |
output_text = en_ur_model.translate(input_text) | |
st.write(f"Translated Text: {output_text}") | |
else: | |
st.write("Please enter text to translate.") | |