ShehryarAli commited on
Commit
356933b
·
verified ·
1 Parent(s): 0d2d799
Files changed (1) hide show
  1. app.py +59 -0
app.py ADDED
@@ -0,0 +1,59 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ from transformers import AutoImageProcessor, Mask2FormerForUniversalSegmentation
3
+ from collections import defaultdict
4
+ import matplotlib.pyplot as plt
5
+ import matplotlib.patches as mpatches
6
+ from matplotlib import cm
7
+ import torch
8
+ from PIL import Image
9
+ import requests
10
+ import gradio as gr
11
+
12
+
13
+ def replace(text):
14
+ processor = AutoImageProcessor.from_pretrained("facebook/mask2former-swin-base-coco-panoptic")
15
+ model = Mask2FormerForUniversalSegmentation.from_pretrained("facebook/mask2former-swin-base-coco-panoptic")
16
+ # image = Image.open(text).convert("RGB")
17
+ inputs = processor(text, return_tensors="pt")
18
+ outputs = model(**inputs)
19
+ prediction = processor.post_process_panoptic_segmentation(outputs, target_sizes=[image.size[::-1]])[0]
20
+
21
+ return draw_panoptic_segmentation(**prediction)
22
+ def draw_panoptic_segmentation(segmentation, segments_info):
23
+ # get the used color map
24
+ viridis = cm.get_cmap('viridis', torch.max(segmentation))
25
+ fig, ax = plt.subplots()
26
+ ax.imshow(segmentation)
27
+ instances_counter = defaultdict(int)
28
+ handles = []
29
+ # for each segment, draw its legend
30
+ for segment in segments_info:
31
+ segment_id = segment['id']
32
+ segment_label_id = segment['label_id']
33
+ segment_label = model.config.id2label[segment_label_id]
34
+ label = f"{segment_label}-{instances_counter[segment_label_id]}"
35
+ instances_counter[segment_label_id] += 1
36
+ color = viridis(segment_id)
37
+ handles.append(mpatches.Patch(color=color, label=label))
38
+
39
+ ax.legend(handles=handles)
40
+
41
+ # Save the figure to a buffer and convert it to a PIL image
42
+ buf = BytesIO()
43
+ plt.savefig(buf, format='png')
44
+ buf.seek(0)
45
+ plt.close(fig) # Close the figure to free memory
46
+
47
+ pil_image = Image.open(buf)
48
+ return pil_image
49
+ # Set up the Gradio interface with updated syntax
50
+ interface = gr.Interface(
51
+ fn=replace, # The function to execute
52
+ inputs=gr.Image(type="pil"), # Input type as PIL image
53
+ outputs="image", # Output type as an image
54
+ title="Image Segmentation with Mask Overlay", # Title for the Gradio app
55
+ description="Upload an image to see the segmentation mask applied." # Description for the app
56
+ )
57
+
58
+ # Launch the Gradio app
59
+ interface.launch(debug=True)