Spaces:
Sleeping
Sleeping
File size: 8,074 Bytes
116eb6b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 |
import streamlit as st
import os
import time
from PIL import Image
import math
from streamlit_sparrow_labeling import st_sparrow_labeling
import requests
from config import settings
import json
class DataInference:
class Model:
# pageTitle = "Data Inference"
subheader_2 = "Upload"
initial_msg = "Please upload a file for inference"
upload_help = "Upload a file to extract data from it"
upload_button_text = "Upload"
upload_button_text_desc = "Choose a file"
extract_data = "Extract Data"
model_in_use = "donut"
img_file = None
def set_image_file(self, img_file):
st.session_state['img_file'] = img_file
def get_image_file(self):
if 'img_file' not in st.session_state:
return None
return st.session_state['img_file']
data_result = None
def set_data_result(self, data_result):
st.session_state['data_result'] = data_result
def get_data_result(self):
if 'data_result' not in st.session_state:
return None
return st.session_state['data_result']
def view(self, model, ui_width, device_type, device_width):
# st.title(model.pageTitle)
with st.sidebar:
st.markdown("---")
st.subheader(model.subheader_2)
with st.form("upload-form", clear_on_submit=True):
uploaded_file = st.file_uploader(model.upload_button_text_desc, accept_multiple_files=False,
type=['png', 'jpg', 'jpeg'],
help=model.upload_help)
submitted = st.form_submit_button(model.upload_button_text)
if submitted and uploaded_file is not None:
ret = self.upload_file(uploaded_file)
if ret is not False:
model.set_image_file(ret)
model.set_data_result(None)
if model.get_image_file() is not None:
doc_img = Image.open(model.get_image_file())
doc_height = doc_img.height
doc_width = doc_img.width
canvas_width, number_of_columns = self.canvas_available_width(ui_width, doc_width, device_type,
device_width)
if number_of_columns > 1:
col1, col2 = st.columns([number_of_columns, 10 - number_of_columns])
with col1:
self.render_doc(model, doc_img, canvas_width, doc_height, doc_width)
with col2:
self.render_results(model)
else:
self.render_doc(model, doc_img, canvas_width, doc_height, doc_width)
self.render_results(model)
else:
st.title(model.initial_msg)
def upload_file(self, uploaded_file):
timestamp = str(time.time())
timestamp = timestamp.replace(".", "")
file_name, file_extension = os.path.splitext(uploaded_file.name)
uploaded_file.name = file_name + "_" + timestamp + file_extension
if os.path.exists(os.path.join("docs/inference/", uploaded_file.name)):
st.write("File already exists")
return False
if len(uploaded_file.name) > 500:
st.write("File name too long")
return False
with open(os.path.join("docs/inference/", uploaded_file.name), "wb") as f:
f.write(uploaded_file.getbuffer())
st.success("File uploaded successfully")
return os.path.join("docs/inference/", uploaded_file.name)
def canvas_available_width(self, ui_width, doc_width, device_type, device_width):
doc_width_pct = (doc_width * 100) / ui_width
if doc_width_pct < 45:
canvas_width_pct = 37
elif doc_width_pct < 55:
canvas_width_pct = 49
else:
canvas_width_pct = 60
if ui_width > 700 and canvas_width_pct == 37 and device_type == "desktop":
return math.floor(canvas_width_pct * ui_width / 100), 4
elif ui_width > 700 and canvas_width_pct == 49 and device_type == "desktop":
return math.floor(canvas_width_pct * ui_width / 100), 5
elif ui_width > 700 and canvas_width_pct == 60 and device_type == "desktop":
return math.floor(canvas_width_pct * ui_width / 100), 6
else:
if device_type == "desktop":
ui_width = device_width - math.floor((device_width * 22) / 100)
elif device_type == "mobile":
ui_width = device_width - math.floor((device_width * 13) / 100)
return ui_width, 1
def render_doc(self, model, doc_img, canvas_width, doc_height, doc_width):
height = 1296
width = 864
annotations_json = {
"meta": {
"version": "v0.1",
"split": "train",
"image_id": 0,
"image_size": {
"width": doc_width,
"height": doc_height
}
},
"words": []
}
st_sparrow_labeling(
fill_color="rgba(0, 151, 255, 0.3)",
stroke_width=2,
stroke_color="rgba(0, 50, 255, 0.7)",
background_image=doc_img,
initial_rects=annotations_json,
height=height,
width=width,
drawing_mode="transform",
display_toolbar=False,
update_streamlit=False,
canvas_width=canvas_width,
doc_height=doc_height,
doc_width=doc_width,
image_rescale=True,
key="doc_annotation" + model.get_image_file()
)
def render_results(self, model):
with st.form(key="results_form"):
button_placeholder = st.empty()
submit = button_placeholder.form_submit_button(model.extract_data, type="primary")
if 'inference_error' in st.session_state:
st.error(st.session_state.inference_error)
del st.session_state.inference_error
if submit:
button_placeholder.empty()
api_url = "https://katanaml-org-sparrow-ml.hf.space/api-inference/v1/sparrow-ml/inference"
file_path = model.get_image_file()
with open(file_path, "rb") as file:
model_in_use = model.model_in_use
sparrow_key = settings.sparrow_key
# Prepare the payload
files = {
'file': (file.name, file, 'image/jpeg')
}
data = {
'image_url': '',
'model_in_use': model_in_use,
'sparrow_key': sparrow_key
}
with st.spinner("Extracting data from document..."):
response = requests.post(api_url, data=data, files=files, timeout=180)
if response.status_code != 200:
print('Request failed with status code:', response.status_code)
print('Response:', response.text)
st.session_state["inference_error"] = "Error extracting data from document"
st.experimental_rerun()
model.set_data_result(response.text)
# Display JSON data in Streamlit
st.markdown("---")
st.json(response.text)
# replace file extension to json
file_path = file_path.replace(".jpg", ".json")
with open(file_path, "w") as f:
json.dump(response.text, f, indent=2)
st.experimental_rerun()
else:
if model.get_data_result() is not None:
st.markdown("---")
st.json(model.get_data_result()) |