Spaces:
Sleeping
Sleeping
File size: 1,896 Bytes
833627a 02604dc fee4a07 36694ba 6b17378 36694ba eb93dd0 36694ba 82e5470 7736791 82e5470 8a82df0 82e5470 7736791 658baf1 82e5470 148cfd6 82e5470 148cfd6 930cdf3 7736791 36694ba |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 |
import subprocess
subprocess.check_call(["pip", "install", "-q", "openai"])
subprocess.check_call(["pip", "install", "-q", "gradio", "transformers", "python-dotenv"])
import gradio as gr
from transformers import TFAutoModelForCausalLM, AutoTokenizer
import openai
from dotenv import load_dotenv
import os
load_dotenv() # load environment variables from .env file
api_key = os.getenv("OPENAI_API_KEY") # access the value of the OPENAI_API_KEY environment variable
def openai_chat(prompt):
if "who are you" in prompt.lower() or "your name" in prompt.lower() or "name" in prompt.lower():
return "My name is ChatSherman. How can I assist you?"
else:
prompt = "I'm an AI chatbot named ChatSherman designed by ShermanAI at Department of Electronic and Information Engineering, The Hong Kong Polytechnic University designed to help you with your engineering questions. " + prompt
completions = openai.Completion.create(engine="text-davinci-003", prompt=prompt, max_tokens=1024, n=1, temperature=0.5,)
message = completions.choices[0].text
return message.strip()
def chatbot(talk_to_chatsherman, history=[]):
output = openai_chat(talk_to_chatsherman)
history.append((talk_to_chatsherman, output))
return history, "", {}
title = "ChatSherman"
description = "This is an AI chatbot powered by ShermanAI."
examples = [
["What is the difference between a resistor and a capacitor?", []],
["Can you explain the concept of electrical conductivity?", []],
["How do you calculate the force required to move an object?", []]
]
inputs = [gr.inputs.Textbox(label="Enter your question: "), "state"]
outputs = ["chatbot", gr.outputs.Textbox(label=""), "state"]
interface = gr.Interface(
fn=chatbot,
inputs=inputs,
outputs=outputs,
title=title,
description=description,
examples=examples
)
interface.launch(debug=True) |