import os import torch from argparse import ArgumentParser, Namespace import json from typing import Any, Dict, List, Mapping, Tuple from easydict import EasyDict from video_to_video.video_to_video_model import VideoToVideo_sr from video_to_video.utils.seed import setup_seed from video_to_video.utils.logger import get_logger from video_super_resolution.color_fix import adain_color_fix from inference_utils import * logger = get_logger() class STAR_sr(): def __init__(self, result_dir='./results/', file_name='000_video.mp4', model_path='./pretrained_weight', solver_mode='fast', steps=15, guide_scale=7.5, upscale=4, max_chunk_len=32, variant_info=None, chunk_size=3, ): self.model_path=model_path logger.info('checkpoint_path: {}'.format(self.model_path)) self.result_dir = result_dir self.file_name = file_name os.makedirs(self.result_dir, exist_ok=True) model_cfg = EasyDict(__name__='model_cfg') model_cfg.model_path = self.model_path model_cfg.chunk_size = chunk_size self.model = VideoToVideo_sr(model_cfg) steps = 15 if solver_mode == 'fast' else steps self.solver_mode=solver_mode self.steps=steps self.guide_scale=guide_scale self.upscale = upscale self.max_chunk_len=max_chunk_len self.variant_info=variant_info def enhance_a_video(self, video_path, prompt): logger.info('input video path: {}'.format(video_path)) text = prompt logger.info('text: {}'.format(text)) caption = text + self.model.positive_prompt input_frames, input_fps = load_video(video_path) in_f_num = len(input_frames) logger.info('input frames length: {}'.format(in_f_num)) logger.info('input fps: {}'.format(input_fps)) video_data = preprocess(input_frames) _, _, h, w = video_data.shape logger.info('input resolution: {}'.format((h, w))) target_h, target_w = h * self.upscale, w * self.upscale # adjust_resolution(h, w, up_scale=4) logger.info('target resolution: {}'.format((target_h, target_w))) pre_data = {'video_data': video_data, 'y': caption} pre_data['target_res'] = (target_h, target_w) total_noise_levels = 900 setup_seed(666) with torch.no_grad(): data_tensor = collate_fn(pre_data, 'cuda:0') output = self.model.test(data_tensor, total_noise_levels, steps=self.steps, \ solver_mode=self.solver_mode, guide_scale=self.guide_scale, \ max_chunk_len=self.max_chunk_len ) output = tensor2vid(output) # Using color fix output = adain_color_fix(output, video_data) save_video(output, self.result_dir, self.file_name, fps=input_fps) return os.path.join(self.result_dir, self.file_name) def parse_args(): parser = ArgumentParser() parser.add_argument("--input_path", required=True, type=str, help="input video path") parser.add_argument("--save_dir", type=str, default='results', help="save directory") parser.add_argument("--file_name", type=str, help="file name") parser.add_argument("--model_path", type=str, default='./pretrained_weight/model.pt', help="model path") parser.add_argument("--prompt", type=str, default='a good video', help="prompt") parser.add_argument("--upscale", type=int, default=4, help='up-scale') parser.add_argument("--max_chunk_len", type=int, default=32, help='max_chunk_len') parser.add_argument("--variant_info", type=str, default=None, help='information of inference strategy') parser.add_argument("--cfg", type=float, default=7.5) parser.add_argument("--solver_mode", type=str, default='fast', help='fast | normal') parser.add_argument("--steps", type=int, default=15) return parser.parse_args() def main(): args = parse_args() input_path = args.input_path prompt = args.prompt model_path = args.model_path save_dir = args.save_dir file_name = args.file_name upscale = args.upscale max_chunk_len = args.max_chunk_len steps = args.steps solver_mode = args.solver_mode guide_scale = args.cfg assert solver_mode in ('fast', 'normal') star_sr = STAR_sr( result_dir=save_dir, file_name=file_name, # new added model_path=model_path, solver_mode=solver_mode, steps=steps, guide_scale=guide_scale, upscale=upscale, max_chunk_len=max_chunk_len, variant_info=None, ) star_sr.enhance_a_video(input_path, prompt) if __name__ == '__main__': main()