Spaces:
Sleeping
Sleeping
import streamlit as st | |
from streamlit_chat import message | |
import tempfile | |
from langchain.document_loaders.csv_loader import CSVLoader | |
from langchain.embeddings import HuggingFaceEmbeddings | |
from langchain.vectorstores import FAISS | |
from langchain.llms import CTransformers | |
from langchain.chains import ConversationalRetrievalChain | |
DB_FAISS_PATH = 'vectorstore/db_faiss' | |
#Loading the model | |
def load_llm(): | |
# Load the locally downloaded model here | |
llm = CTransformers( | |
model = "llama-2-7b-chat.ggmlv3.q2_K.bin", | |
model_type="llama", | |
max_new_tokens = 512, | |
temperature = 0.2 | |
) | |
return llm | |
st.title("🦙Llama2🦜CSV🦙") | |
st.markdown("<h3 style='color: black;'>Harness the power of LLama2 with Langchain.</h3>", unsafe_allow_html=True) | |
st.markdown("<h4 style='color: black;'>Developed by <a href='https://github.com/rohan-shaw'>Rohan Shaw</a> with ❤️</h4>", unsafe_allow_html=True) | |
uploaded_file = st.sidebar.file_uploader("CSV file here", type="csv") | |
if uploaded_file : | |
with tempfile.NamedTemporaryFile(delete=False) as t: | |
t.write(uploaded_file.getvalue()) | |
temp_path = t.name | |
loader = CSVLoader(file_path=temp_path, encoding="utf-8", csv_args={ | |
'delimiter': ','}) | |
data = loader.load() | |
#st.json(data) | |
embeddings = HuggingFaceEmbeddings(model_name='sentence-transformers/all-MiniLM-L6-v2', | |
model_kwargs={'device': 'cpu'}) | |
db = FAISS.from_documents(data, embeddings) | |
db.save_local(DB_FAISS_PATH) | |
llm = load_llm() | |
chain = ConversationalRetrievalChain.from_llm(llm=llm, retriever=db.as_retriever()) | |
def conversational_chat(query): | |
result = chain({"question": query, "chat_history": st.session_state['history']}) | |
st.session_state['history'].append((query, result["answer"])) | |
return result["answer"] | |
if 'history' not in st.session_state: | |
st.session_state['history'] = [] | |
if 'generated' not in st.session_state: | |
st.session_state['generated'] = ["Bhai, " + uploaded_file.name + " is file ke bare mein kuch bhi puch le aankh 👀 band karke answer dunga 🤔"] | |
if 'past' not in st.session_state: | |
st.session_state['past'] = ["Aur, bol kya hal chal ! 🖖"] | |
#container for the chat history | |
response_container = st.container() | |
#container for the user's text input | |
container = st.container() | |
with container: | |
with st.form(key='my_form', clear_on_submit=True): | |
user_input = st.text_input("Query:", placeholder="Apne CSV file ke data ke bare me yaha pe puch (:", key='input') | |
submit_button = st.form_submit_button(label='Send') | |
if submit_button and user_input: | |
output = conversational_chat(user_input) | |
st.session_state['past'].append(user_input) | |
st.session_state['generated'].append(output) | |
if st.session_state['generated']: | |
with response_container: | |
for i in range(len(st.session_state['generated'])): | |
message(st.session_state["past"][i], is_user=True, key=str(i) + '_user', avatar_style="human") | |
message(st.session_state["generated"][i], key=str(i), avatar_style="pixel-art-neutral") | |