Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -32,10 +32,15 @@ if predictions[0,0] >= 0.4:
|
|
32 |
|
33 |
readout = "This news is probably a "+ judge + f" one. The fake probability is {100*predictions[0,0]:.4f}%."
|
34 |
|
35 |
-
from transformers import AutoModelWithLMHead, AutoTokenizer
|
36 |
|
37 |
-
tokenizer = AutoTokenizer.from_pretrained("mrm8488/t5-base-finetuned-summarize-news",use_fast=False)
|
38 |
-
model = AutoModelWithLMHead.from_pretrained("mrm8488/t5-base-finetuned-summarize-news")
|
|
|
|
|
|
|
|
|
|
|
39 |
|
40 |
def summarize(text, max_length=150):
|
41 |
input_ids = tokenizer.encode(text, return_tensors="pt", add_special_tokens=True)
|
|
|
32 |
|
33 |
readout = "This news is probably a "+ judge + f" one. The fake probability is {100*predictions[0,0]:.4f}%."
|
34 |
|
35 |
+
#from transformers import AutoModelWithLMHead, AutoTokenizer
|
36 |
|
37 |
+
#tokenizer = AutoTokenizer.from_pretrained("mrm8488/t5-base-finetuned-summarize-news",use_fast=False)
|
38 |
+
#model = AutoModelWithLMHead.from_pretrained("mrm8488/t5-base-finetuned-summarize-news")
|
39 |
+
|
40 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
41 |
+
|
42 |
+
tokenizer = AutoTokenizer.from_pretrained("pvduy/pythia-1B-sft-summarize-tldr")
|
43 |
+
model = AutoModelForCausalLM.from_pretrained("pvduy/pythia-1B-sft-summarize-tldr")
|
44 |
|
45 |
def summarize(text, max_length=150):
|
46 |
input_ids = tokenizer.encode(text, return_tensors="pt", add_special_tokens=True)
|