Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,31 +1,57 @@
|
|
1 |
-
import os
|
2 |
import gradio as gr
|
3 |
-
import
|
4 |
-
|
5 |
|
6 |
# Retrieve the Hugging Face token from environment variables
|
7 |
hf_token = os.getenv("HUGGINGFACE_TOKEN")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
|
9 |
-
|
10 |
-
model_id = "meta-llama/Llama-3.2-3B-Instruct"
|
11 |
-
tokenizer = AutoTokenizer.from_pretrained(model_id, use_auth_token=hf_token)
|
12 |
-
model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.bfloat16, device_map="auto", use_auth_token=hf_token)
|
13 |
-
|
14 |
-
# Define the prediction function
|
15 |
-
def generate_text(prompt):
|
16 |
-
inputs = tokenizer(prompt, return_tensors="pt", truncation=True, max_length=131072)
|
17 |
-
with torch.no_grad():
|
18 |
-
outputs = model.generate(**inputs, max_length=131072)
|
19 |
-
return tokenizer.decode(outputs[0], skip_special_tokens=True)
|
20 |
-
|
21 |
-
# Create the Gradio interface
|
22 |
-
interface = gr.Interface(
|
23 |
-
fn=generate_text,
|
24 |
-
inputs=gr.Textbox(lines=10, label="Input Prompt"),
|
25 |
-
outputs=gr.Textbox(lines=10, label="Generated Text"),
|
26 |
-
title="Meta Llama 3.2 3B Instruct Model",
|
27 |
-
description="Generate text using the Meta Llama 3.2 3B Instruct model with a context length of up to 128,000 tokens."
|
28 |
-
)
|
29 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
if __name__ == "__main__":
|
31 |
-
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
+
import requests
|
3 |
+
import os
|
4 |
|
5 |
# Retrieve the Hugging Face token from environment variables
|
6 |
hf_token = os.getenv("HUGGINGFACE_TOKEN")
|
7 |
+
if not HF_TOKEN:
|
8 |
+
raise ValueError("Please set your Hugging Face API token as HF_API_TOKEN in the Secrets settings.")
|
9 |
+
|
10 |
+
# Model details
|
11 |
+
MODEL_ID = "meta-llama/llama-3-3b-instruct" # Change to the exact model ID
|
12 |
+
API_URL = f"https://api-inference.huggingface.co/models/{MODEL_ID}"
|
13 |
+
|
14 |
+
# Headers for API requests
|
15 |
+
HEADERS = {
|
16 |
+
"Authorization": f"Bearer {HF_TOKEN}",
|
17 |
+
"Content-Type": "application/json"
|
18 |
+
}
|
19 |
+
|
20 |
+
def chat_with_llama(prompt, temperature=0.7, max_tokens=256):
|
21 |
+
"""Sends a request to Hugging Face Inference API and returns the response."""
|
22 |
+
payload = {
|
23 |
+
"inputs": prompt,
|
24 |
+
"parameters": {
|
25 |
+
"temperature": temperature,
|
26 |
+
"max_new_tokens": max_tokens,
|
27 |
+
"top_p": 0.95
|
28 |
+
}
|
29 |
+
}
|
30 |
|
31 |
+
response = requests.post(API_URL, headers=HEADERS, json=payload)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
|
33 |
+
if response.status_code == 200:
|
34 |
+
return response.json()[0]["generated_text"]
|
35 |
+
else:
|
36 |
+
return f"Error {response.status_code}: {response.text}"
|
37 |
+
|
38 |
+
# Gradio UI
|
39 |
+
with gr.Blocks() as demo:
|
40 |
+
gr.Markdown("<h2 align='center'>🚀 Llama 3.2 3B Instruct Chatbot</h2>")
|
41 |
+
|
42 |
+
with gr.Row():
|
43 |
+
with gr.Column():
|
44 |
+
prompt = gr.Textbox(label="Enter your prompt:", placeholder="Ask me anything...", lines=3)
|
45 |
+
temperature = gr.Slider(0.1, 1.5, value=0.7, label="Temperature")
|
46 |
+
max_tokens = gr.Slider(50, 1024, value=256, label="Max Tokens")
|
47 |
+
submit = gr.Button("Generate Response")
|
48 |
+
|
49 |
+
with gr.Column():
|
50 |
+
output = gr.Textbox(label="AI Response", interactive=False, lines=10)
|
51 |
+
|
52 |
+
submit.click(chat_with_llama, inputs=[prompt, temperature, max_tokens], outputs=output)
|
53 |
+
|
54 |
+
# Launch app
|
55 |
if __name__ == "__main__":
|
56 |
+
demo.launch()
|
57 |
+
|