import gradio as gr from transformers import pipeline # Initialize the summarization pipeline summarizer = pipeline("summarization", model="facebook/bart-large-cnn") # You can choose other models def summarize_text(text): """Summarizes the given text using the pre-trained model.""" try: summary = summarizer(text, max_length=150, min_length=30, do_sample=False)[0]['summary_text'] # Adjust max and min length as needed return summary except Exception as e: return f"Error during summarization: {str(e)}" # Create the Gradio interface iface = gr.Interface( fn=summarize_text, inputs=gr.Textbox(lines=5, label="Nepali Text to Summarize"), outputs=gr.Textbox(lines=5, label="Summary"), title="Nepali Text Summarizer", description="Enter Nepali text and get a concise summary using a pre-trained NLP model.", allow_flagging=False ) if __name__ == "__main__": iface.launch()